Andrey Korotayev

Yüklə 232,67 Kb.

ölçüsü232,67 Kb.
1   2   3   4   5   6   7   8   9   ...   12

Evolution: Cosmic, Biological, Social 



bones, neurons, muscles, gases, etc. (see also Hall and Fagen 1956). In many 

cases we are dealing with very complex systems that are found in many places 

(Haken 2005: 16). The emergence of forms of greater complexity results from 

the transition from one evolutionary level to another. The general principles re-

lated to the functioning and development of such objects can be described by 

general system theory. The concepts of self-organization and transition from 

equilibrium to a non-equilibrium state are also relevant in this respect. In addi-

tion, both biotic and abiotic systems show complex interactions with their envi-

ronment that can be described in terms of general principles.  

In the fourth place, mega-evolutionary trajectories can be considered as 

components of a single process, and their different phases can be regarded as dif-

ferent types of macroevolution that could be similar in terms of their main trends 

and directions as well as particular mechanisms. This will be discussed in more 

detail below.  

In the fifth place, we can speak about common vectors of megaevolution as 

well as common causes and conditions during the transition from one level of 

organization to another.


 There is a number of very important categories that 

are relevant for the analysis of all phases of megaevolution, most notably self-

organization, stable and chaotic states, phase transition, bifurcation, etc.  

Because of our rapidly growing knowledge of the universe, on the one hand,  

and, simultaneously, our lack of reliable information about many of its aspects,  

on the other hand, arguments regarding the issue of whether our world is  

‘strange’, fortuitous (see, e.g., Davies 1982, 1985, etc.), or ‘regular’ remain ra- 

ther polarized (see, in particular, Kazyutinsky 1994). At present, we are dealing  

with conflicting paradigms that are hard to falsify, while even the very notion of  

what ‘regular’ means is not sufficiently rigorously defined (see Grinin and Ko- 

rotayev 2009: ch. 1 for more detail). For this reason, modern cosmological the- 

ories and hypotheses sometimes exhibit directly opposing ideas. For example,  

according to Panov (2008a), the cosmological theory of ‘chaotic inflation’ im- 

plies that there is not just one universe, but in fact, an unlimited number of  

them, while all those universes can possess entirely different physics. As  

a result, life may be possible in some universes and impossible in others. Since  

we emerged in a universe where the life was possible, we observe the set of pa- 

rameters that corresponds to the so-called ‘anthropic principle’.


 However, it  

may be that the cosmologies of inflation, the multiverse, and string theory do not  

have any relevance for reality as we observe it. The fundamental constants may  



 The problem of evolutionary transitions from one level of megaevolution to another is discussed 

in a number of contributions to the present Almanac (Spier, Snooks, Grinin, Markov, Korotayev, 



 The anthropic principle (that does not have any generally accepted wording yet) maintains 

the presence of a link between the large-scale properties of the expanding universe and the emer-

gence of life, intelligence, and civilizations within it (see, e.g., Kazyutinsky 1994).  

Introduction. Evolutionary Megaparadigms 



simply have the observed values just because they cannot have any other values  

due to some yet unknown fundamental physical laws (Panov 2008а: 54–55).  

At least five basic aspects can be identified that help us to recognize sub-

stantial similarities between different evolutionary forms and processes:



1) the ‘starting’ level/aspect, consisting of a minimum number of general 

characteristics of matter and energy that are, apparently, determined at the very  

beginning of space and time. These fundamental characteristics allow us to  

identify the most basic common denominator for different evolutionary levels in 

terms of entropy/energy, self-organization potential, etc.;  

2) ‘genetic-hierarchical’ levels/aspects, because any new form of evolution 

must be connected with the previous ones;  

3) ‘interaction and adaptation’: emerging levels of organization may ‘tune 

up’ their parameters compared to preceding evolutionary forms, while at 

the same time all forms of evolution depend on each other; hence, there is a cer-

tain kind of ‘accommodation’ between them;  

4) ‘behavioral’ aspects: different forms of matter can sometimes behave ra-

ther similarly in certain conditions. They can acquire similar structures, while it 

may also be possible to detect similar phases, cycles, rhythms and patterns. As 

a result, by concentrating on similarities instead of differences in details we 

may be able to formulate certain general principles concerning the ‘behavior’ 

of objects at various levels of evolution;  

5) trends in, and possible direction of, evolution: this aspect has attracted 

the attention of especially those evolutionists who seek to define evolution in 

terms of transitions from less complex/developed systems to more com-

plex/developed ones. Major issues include the following questions: Are these 

trends large-scale (for example of intergalactic level) or more localized, such as 

of the planetary scale and below? Is this dynamics cyclical or linear, like, for 

example, the rise and demise of certain societies? Do we need the anthropic 

principle to explain this? Currently, no consensus exists on these and many other 

issues of this kind. However, there can be no doubt that a great number of 

trends can be observed in megaevolution, which needs to be explained.  

* * * 

We can now provide a fuller, yet still preliminary, characterization of evolu-

tionary  megaparadigms. First of all, this involves general evolutionary laws, 

characteristics, and principles; vectors, levels, and rhythms of mega- and mac-

roevolution as well as similarities of ‘behavior’ of different forms of matter in 



 In particular, many processes that take place at different evolutionary levels are described by 

similar basic models; their phase portraits are also often very similar, which makes it possible to 

detect a number of important common traits in many different evolutionary processes (Cher-

navsky 2004: 83).  

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   ...   12

Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur © 2019
rəhbərliyinə müraciət

    Ana səhifə