Andrey Korotayev

Yüklə 232,67 Kb.

ölçüsü232,67 Kb.
1   ...   4   5   6   7   8   9   10   11   12

Evolution: Cosmic, Biological, Social 


sult, in most places the level of complexity has remained rather low. This is 

first of all due to the fact that most of the Universe is virtually empty. Wher-

ever there was sufficient matter, complexity rose in the form of galaxies, which 

are made up of stars, planets, and clouds of gas and dust, possibly with black 

holes in their centers. The growing range of chemical elements needed for life 

was cooked by exploding stars. This signaled another rise in complexity. 

In the beginning, the energy levels determined the level of complexity  

the Universe could attain. After about 400,000 years of expansion, however, 

the rise of complexity has come as a result of the interplay between energy lev-

els and energy flows. The first level of material complexity would be reached 

as a result of the nuclear force. This complexity consisted of the smallest, sub-

atomic and atomic particles. Electromagnetism would take care of the second, 

intermediate, stage, in which atoms, molecules and complexes of molecules 

would be formed. The effects of gravity would inaugurate the last stage and 

would bring about all the larger structures we know in the observable Universe. 

Spier believes that greater forms of biological and cultural complexity are 

exceedingly rare in the Universe. During the past four billion years or so, 

the energy flows and levels on the surface of our home planet were suitable for 

the emergence of this type of complexity. The intricate energy flows on the 

Earth's surface first made possible forms of biological complexity. Life began 

to actively harness more and increasingly varied sources of matter and energy. 

A very similar process took place during the cultural evolution of humankind. 

This has led to the greatest levels of complexity known today.  

Robert L. Carneiro (‘Stellar Evolution and Social Evolution: A Study in 

Parallel Processes’) suggests that the process of evolution can be seen at work 

in all domains of nature. Carneiro points out a number of parallels between 

the development of stars and the development of human societies. For example, 

the use of the comparative method has been prominent in the study of evolution 

in both fields. Also, there are parallels between the two, such as the use of stag-

es to distinguish significant phases of the evolutionary process, the manifesta-

tion of both multilinear and unilinear evolution in both, and differential rates of 

evolution among stars and societies.  

As has been already mentioned above, in his book First Principles (1862), 

published only three years after Darwin's On the Origin of Species, Herbert 

Spencer portrayed evolution as something far beyond ‘descent with modifica-

tion’. He saw it as a much broader process, which had manifested itself  

throughout the Universe, from the tiniest microorganisms to the largest galaxies.  

The evolution of the stars, then, was clearly within his purview.  

As a field of astronomical research, stellar evolution has been pursued with  

increasing vigor and impressive results since Spencer's time. In fact, it may well  

be that the results astronomers and astrophysicists have been able to accomplish  

in reconstructing the process of cosmic evolution stand among the greatest intel- 

lectual triumphs of all time.  

Introduction. Evolutionary Megaparadigms 


Carneiro points to some striking parallels between the evolution of stars and 

the evolution of human societies which anthropologists are barely aware of. 

And while recognition of these parallels may mean very little to the powerful 

and sophisticated science of astronomy, it just may be of some interest and val-

ue to the fragile and beleaguered field of cultural evolution.  

*   *   *  

The Second Section of the Almanac (Biological and Social Forms of Evo-

lution: Connections and Comparisons) considers a number of important 

macro-evolutionary problems of biology and sociology. However, it will not be 

an exaggeration to say that it is primarily devoted to what may be denoted as 

comparative evolutionary studies. All the contributions to this section deal with 

comparisons between mechanisms, factors, laws, and trends in various fields of 

evolutionary studies as well as with terminology developed and applied in 

those fields, while the authors also consider the possibilities of their use in other 

fields. These articles also deal with issues of the development of general evolu-

tionary methodologies and terminologies. This section mainly deals with com-

parisons between biological and social macroevolution, mostly since social 

evolution is substantially closer to biological evolution rather than to the evolu-

tion of abiotic systems. However, we have no doubts about the intrinsic possi-

bility of comparative research with respect to any types of evolution (such as, 

for instance, shown in Carneiro's contribution to the First Section). In addition

relatively close types of macroevolution (physical and chemical, chemical and 

biological, geological and biological, etc.) may share evolutionary processes to 

some extent. In many cases it may even be better to speak of co-evolution be-

tween them – for example, with respect to geological and biological macroevo-

lution, or biological and social macroevolution. Especially during the 20



tury new scientific approaches emerged and developed quickly based on 

the analysis of such mutual links and parallels, including cybernetics and bio-

geochemistry, which studies, among other things, the relationship between 

the evolution of life and of inorganic matter on the Earth.  

Contributions to the Second Section of the Almanac cover a wide range of 

topics, ranging from specific issues in biological and social sciences to the appli-

cation of general systems theory to biological and social systems, including be-

havioral strategies. One of the main issues covered in this section is the prob-

lem of progressive change and its criteria in biology and history (this subject is 

discussed in the contribution by Leonid Grinin, Alexander Markov,  and  An-

drey Korotayev). The notion of progress (together with the one of evolution) 

came to the evolutionary biology from philosophy. However, this term remains 

highly controversial and is rejected by many biologists and sociologists. While 

discussing the possibility of the use of this term in evolutionary biology, Grant 

(1991: ch. 34) poses the following questions:  

Dostları ilə paylaş:
1   ...   4   5   6   7   8   9   10   11   12

Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur © 2019
rəhbərliyinə müraciət

    Ana səhifə