C 1288 Munoz indd



Yüklə 78,06 Kb.
Pdf görüntüsü
tarix17.01.2018
ölçüsü78,06 Kb.
#21370


© 2013 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

Introduction

Chagas’ disease, caused by 



Trypanosoma cruzi

is among the most important endemic parasitic 

diseases. Approximately 16 to 18 million peo-

ple are infected in large areas of Latin America 

(Fournet and Munoz, 2002). Over 1 million of 

them will die of the disease unless considerable 

advances are made (Maguire, 2006). Further-

more, there is increasing evidence that it may be 

an emerging problem in the developed world, 

with more than 100,000 infected persons living 

in the United States of America alone (Maguire, 

2006).


The drugs used for the treatment of this dis-

ease are nifurtimox, a nitrofuran derivative, and 

benznidazole, a nitroimidazole derivative. Both 

drugs generate severe side effects, and nifurtimox 

is no longer used in several countries because of 

its toxicity (Castro 



et al., 2006; Croft et al., 2005). 

Consequently, the need for effective anti-



Trypa-

nosoma compounds with less toxicity stimulates 

the search for natural products as novel drug can-

didates with a potential clinical use (Hoffmann 

et 

al., 1992; González et al., 1990).

The aim of the present work was to assess the 



in vitro activity of some Chilean plant extracts 

against the trypomastigote forms of 



Trypanosoma 

cruzi. Thirty-one species of plants belonging to 28 

genera in 21 families were investigated. The most 

active extracts were those obtained from

 Podan-

thus ovatifoliusBerberis microphyllaKageneckia 

oblonga, and Drimys winteri.

Drimys winteri (Winteraceae) is a tree of eco-

nomic and social importance with medicinal 

properties in Chile. This plant contains several 

sesquiterpenes of the drimane type. Leaves of 



Drimys winteri are used in Chilean folk medicine 

as analgesic and in anti-infl ammatory medications 

(Houghton and Manby, 1998; San Martin, 1983; 

Cotoras 


et al., 2001; Muñoz and Fajardo, 2005; 

Muñoz 


et al., 2001; Ruiz et al., 2010).

Experimental

General

Column chromatography (CC) was carried 

out using silica gel 60G (Merck Darmstadt, Ger-

many). Thin-layer chromatography (TLC) was 

performed on silica gel GF254 (Merck) with (i) 

n-hexane/ethyl acetate (8:2, v/v) and (ii) n-hex-

ane/acetone (8:2) as eluents. Spots were detected 

under UV light or by spraying with Liebermann-

Burchard reagent and heating to 110 °C for 2 min. 



Medicinal Plants of Chile: Evaluation of their 

Anti-Trypanosoma cruzi Activity

Orlando M. Muñoz

a,

*, Juan D. Maya



b

, Jorge Ferreira

b

, Philippe Christen



c

José San Martin



d

, Rodrigo López-Muñoz

b

, Antonio Morello



b

and Ulrike Kemmerling



b

Department of Chemistry, Faculty of Science, University of Chile, Santiago, Chile. 



Fax: 56-2 2713888. E-mail: omunoz@uchile.cl

Institute of Biological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile



School of Pharmaceutical Sciences, EPGL, University of Geneva, 

University of Lausanne, 30, Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland

Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Talca, Chile



*  Author for correspondence and reprint requests

Z. Naturforsch. 



68 c, 198 – 202 (2013); received December 15, 2011/March 7, 2013

The extracts of several plants of Central Chile exhibited anti-



Trypanosoma cruzi try-

pomastigotes activity. Most active extracts were those obtained from 



Podanthus ovatifolius

Berberis microphyllaKageneckia oblonga, and Drimys winteri. The active extract of Drimys 

winteri  (IC

50

 51.2 



µg/mL) was purifi ed and three drimane sesquiterpenes were obtained: 

polygodial, drimenol, and isodrimenin. Isodrimenin and drimenol were found to be active 

against the trypomastigote form of 

T. cruzi with IC

50

 values of 27.9 and 25.1 



µ

M

, respectively.



Key words: Anti-Trypanosoma cruzi, Drimenol, Isodrimenin


O. M. Muñoz 

et al. · Antichagasic Plant Extracts

199


Preparative TLC was performed on 2 mm thick 

silica gel F254 plates (Merck) and on a chroma-

totron (Harrison-Research Model 7924 T; Palo 

Alto, CA, USA) with 1-mm and 2-mm discs, using 

silica gel 60 PF 254 (Merck). Flash chromatogra-

phy was performed on silica gel 60 H (Merck) 

with an 

n-hexane/ethyl acetate gradient (0, 1, 5, 

10, 50, 100% ethyl acetate). Melting points are un-

corrected. Optical rotations were measured with 

a Perkin Elmer 241 MC polarimeter (Waltham, 

MA, USA).

1

H and 



13

C NMR spectra were recorded in 

CDCl

3

, at 400 and 500 MHz for 



1

H NMR and 

100 and 125 MHz for 

13

C NMR, on a Bruker 



Avance AM-400 spectrometer (Karlsruhe, Ger-

many).


The 

1

H NMR spectra used for the measure-



ment of the coupling constants and the HMBC 

spectra used for the determination of the con-

nectivity of substituents were recorded in CDCl

3

 



on a Bruker-DRX 500 MHz instrument. The 

1



Larmor frequency was determined using a 5-mm 

QPN direct detection probe. Chemical shifts (δ in 

ppm) are relative to the internal standard tetra-

methylsilane (TMS). 1D (

1

H, 


13

C) and 2D (COSY, 

HMQC, HMBC) experiments were performed 

using standard Bruker microprograms.



Plant materials

Ethnopharmacological and ethnobotanical lite-

rature was obtained from Instituto de Biología 

Vegetal y Biotecnología, Universidad de Talca, 

Talca, Chile, and from the Departamento de 

Botanica, Facultad de Ciencias, Universidad de 

Chile, Santiago, Chile. Thirty-one plant species 

were included in the study and collected in Cen-

tral Chile (Coastal Range, Maule Region) during 

the fl owering season in January 2009 and 2010, 

and identifi ed by one of us (J. S. M.). Voucher 

specimens are deposited and kept in the Instituto 

de Biología Vege tal y Biotecnología, Universidad 

de Talca. Plants used in this study are listed in 

Table I.

Extraction

The collected plants were washed with distilled 

water and dried on absorbing paper at an ambi-

ent temperature of 25 – 30 °C in open air in the 

shade for 5 – 10 d. The dried plant samples were 

powdered and stored at ambient temperature 

in amber glass bottles until use. The powdered 

plant materials (10.0 – 80.0 g) were extracted with 

dichloromethane (4.0 mL/g plant) or methanol/

water (4:1, v/v; 4.0 mL/g plant) for 4 h at room 

temperature. The extracts were fi ltered and evap-

orated to dryness under vacuum. The residues 

Table I. Chilean plant species used in this study.

No. Species, family

Podanthus ovatifolius Lag., Asteraceae

Cryptocarya alba (Mol.) Looser, Lauraceae

Escallonia illinita K. Presl., Saxifragaceae

Blepharocalyx cruckshanksii (H. et A.) Nied., 

Myrtaceae

Satureja gilliesii (Graham) Briq., Lamiaceae

Drimys winteri J. R. Forst. et G. Forst., Winteraceae

Luma chequen (Mol.) A. Gray, Myrtaceae

Luma apiculata (DC.) Burret, Myrtaceae

Fuchsia magellanica Lam., Onagraceae

10 Colliguaja odorifera Mol., Euphorbiaceae

11 Ugni molinae Turcz., Myrtaceae

12 Alstroemeria revoluta Ruiz et Pav., Amaryllidaceae

13 Pitavia punctata Mol., Rutaceae

14 Podocarpus saligna D. Don, Podocarpaceae

15 Lapageria rosea Ruiz et Pav., Philesiaceae

16 Schinus latifolius (Gill. ex Lindl.) Engler, Anacar-

diaceae


17 Kageneckia oblonga Ruiz et Pav., Rosaceae

 

No. Species, family



18 Margyricarpus pinnatus (Lam.) Kuntze, Rosaceae 

19 Pseudognaphalium vira vira (Mol.) A. Anderb., 

Asteraceae

20 Eupatorium salvia Colla, Asteraceae

21 Baccharis concava (Ruiz et Pav.) Pers., Asteraceae

22 Viviania crenata (Hook.) G. Don ex H. et A., Ru-

biaceae

23 Fabiana imbricata Ruiz et Pav., Solanaceae



24 Myoschilos oblonga Ruiz et Pav., Santalaceae

25 Berberis darwinii Hook., Berberidaceae

26 Maytenus chubutensis (Speg.) Lourt., O’Donell et 

Sleum., Celastraceae

27 Myrceugenia chrysocarpa (O. Berg) Kausel, Myrta-

ceae


28 Elytropus chilensis (A. DC.) Muell. Arg., Apocyn-

aceae


29 Berberis serrato-dentata Lechler, Berberidaceae

30 Berberis microphylla G. Forst., Berberidaceae 

31 Pseudopanax laetevirens (Gay) Franch., Araliaceae



200

O. M. Muñoz 



et al. · Antichagasic Plant Extracts

were weighed and solubilized in dimethylsulfox-

ide (DMSO) for biological assays.

Culture of trypomastigotes

African green monkey Vero cells were infected 

by co-incubation of a culture of epimastigotes in 

the late stationary phase, which contains about 

5% of the infective trypomastigote form (Con-

treras 


et al., 1985). Subsequently, the trypomas-

tigotes harvested from this culture were used to 

further reinfect cultures of Vero cells at a density 

of 1 · 10

6

 cells/25 cm



2

, in a proportion of parasites 

to cells of 2:1. Vero cell cultures infected with 

trypomastigotes were incubated at 37 °C in hu-

midifi ed air and 5% CO

2

 for 5 – 7 d. After that 



time, the culture medium was collected and cen-

trifuged at 3,000 x 



g for 5 min, and the resulting 

trypomastigote-containing pellet was resuspend-

ed at a density of 1 · 10

7

 parasites/mL in RPMI 



1640 culture medium (without phenol red).

Trypomastigote viability assay

Viability assays were performed using the 

formazan formation method, called 3-(4,5-di-

methylthiazol-2-yl)-2,5-diphenyltetrazolium bro-

mide (MTT) assay, as previously described (Faun-

dez 


et al., 2005; Mosmann, 1986). Briefl y, 1 · 10

7

 



trypomastigotes were incubated in RPMI 1640 

culture medium at 37 °C for 24 h with and with-

out addition of the extracts at fi nal  concentra-

tions of 10 – 500 



µg/mL. Formazan formation was 

measured at 570 nm in a multi-well reader (Lab 

systems Multiskan MS, Vantaa, Finland).

Characterization of compounds isolated from 

Drimys winteri

Barks of 



D. winteri were dried in an air-forced 

oven at 40 °C for 48 h. Four hundred fi fty g of 

chopped and powdered bark material were ex-

tracted with 



n-hexane (2 x 2.0 L) for 24 h in a 

Soxhlet extractor. Filtration followed by evapora-

tion of the solvent under reduced pressure (0.21 

atm) at 25 – 30 °C gave a yellowish oily residue 

(30.0 g).

The crude 



n-hexane extract was fi rst subjected 

to fl ash CC (silica gel, 230 – 400 mesh, 650 g), then 

fractionated by gradient elution (100% 

n-hexane 

to 100% ethyl acetate) to give individual frac-

tions which were further purifi ed by two silica 

gel columns. Elution with 



n-hexane/ethyl acetate 

(98:2 – 90:10) yielded 2.84 g of a yellow mixture 

consisting of two compounds. Further separation 

on the chromatotron afforded 0.85 g of polygo-

dial and 0.015 g of drimenol. The ethanol fraction 

(2.5 g) was subjected to CC on silica gel and sepa-

rated by gradient elution (dichloromethane/meth-

anol) to afford isodrimenin. The compounds were 

identifi ed by spectral data (IR, 

1

H NMR, and 



13

NMR), which were in good agreement to those 



previously published (Cicció, 1984; Jansen and 

Groot,


  2004; McCallion, 1982; Aasen et al.,  1977; 

White and Burton, 1985), and by direct compari-

son with authentic samples.

Results and Discussion

Table I shows the 31 plants used in this study 

from which dichloromethane and methanol/wa-

ter extracts were prepared and tested against 

trypomastigotes in concentrations of up to 

500 


µg/mL. Table II shows the activities of ex-

tracts of 



Podanthus ovatifolius,  Berberis micro-

phyllaKageneckia oblonga, and Drimys winteri

the four plants that produced signifi cant inhibi-

tion in the MTT test. These plant extracts ex-

hibited activities between 7 and 5% of those of 

the standard compounds benznidazole or nifur-

timox, respectively. The extracts from all other 

plants in Table I showed an IC

50

 value higher 



than 500 

µg/mL. Table III shows the activities of 

isodrimenin, drimenol, and polygodial, the three 

Table II. Activity of Chilean plant extracts on the 

Tryp-

anosoma cruzi trypomastigotes.

Plant


Extract

MTT viability test

IC

50

 [



µg/mL]

Mitique (



Podanthus 

ovatifolius)

Methanol/water

40.1  3.0

Michay (


Berberis 

microphylla)

Methanol/water

38.4  5.0

Bollén (


Kageneckia 

oblonga)

Methanol/water

35.7  4.0

Canelo


 (Drimys 

winteri)

Dichloro-

methane

51.2  2.0



Nifurtimox

-

4.6  0.1



Benznidazole

-

8.4  0.1



The MTT assay was carried out with the trypomastigote 

form of 


T. cruzi. Extracts were used at fi nal  concen-

trations of 10, 15, 20, 50, 100, and 500 



µg/mL. IC

50

 val-



ues were calculated from drug concentration-response 

curves (see Experimental). Results are shown as the 

average  standard deviation of three independent ex-

periments.




O. M. Muñoz 

et al. · Antichagasic Plant Extracts

201


sesquiterpenes isolated from the stem bark of 

Drimys winteri (Fig. 1). The results show that 

polygodial, the most active antifungal (Kubo 



et 

al., 2001), antifeedant (Zapata et al., 2009), and 

antibacterial (Kubo 



et al., 2005) from D. winteri

has a weak anti-



Trypanosoma activity with re-

spect to the other sesquiterpenes. Isodrimenin 

and drimenol showed similar activities as nifur-

timox or benznidazole (Table III). Some com-

pounds of the other three active plant extracts 

are being isolated and their antiparasite activity 

will be tested later.

Plant metabolites active against 



T. cruzi have 

been recently reviewed by our laboratories (Maya 



et al.,  2007; Salas et al.,  2011), and we concluded 

that the compounds isodrimenin and drimenol 

isolated from 

Drimys winteri represent new basic 

lead structures to obtain new selective anticha-

gasic drugs.

Acknowledgements

This research was funded by World Bank-CON-

ICYT ACT-112 and Fondecyt-Chile No. 1090078 

and 11110182. The authors thank Dr. Yedy Israel 

for his comments on the manuscript.

Aasen A. J., Nishida J., Enzell C. D., and Appel H. H. 

(1977), The structure of (11ξ,12ξ)-11,12-di(7-drimen-

11-oxy)-11,12-epoxy-7-drimene. Acta Chem. Scand. 



31B,  51 – 55.

Castro J. A., Mecca M. M., and Bartel L. C. (2006), Toxic 

side effects of drugs used to treat Chagas’ disease 

(American trypanosomiasis). Hum. Exp. Toxicol. 



25

471 – 479.

Cicció J. (1984), Poligodial, constituyente mayoritario 

de la corteza de 



Drimys granadensis L. F. (Winter-

aceae). Ing. Cienc. Quím. 



8,  45 – 46.

Contreras V. T., Salles J. M., Thomas N., Morel C. M., 

and Goldenberg S. (1985), 

In vitro differentiation of 

Trypanosoma cruzi under chemically defi ned  condi-

tions. Mol. Biochem. Parasitol. 



16, 315 – 327.

Cotoras M., Garcia C., Lagos C., Folch C., and Mendoza 

L. (2001), Antifungal activity on 

Botrytis cinerea of 

fl avonoids and diterpenoids isolated from the surface 

of 

Pseudognaphalium  spp. Bol. Soc. Chil. Quím. 46

433 – 440.

Croft S. L., Barrett M. P., and Urbina J. (2005), Chemo-

therapy of trypanosomiases and leishmaniasis. Trends 

Parasitol. 

21,  508 – 512.

Faundez M., Pino P., Letelier P., Ortiz C., López R., 

 

Seguel C., Ferreira J., Pavani M., Morello A., and 



Maya J. D. (2005), Buthionine sulfoximine increases 

the toxicity of nifurtimox and benznidazole to 



Tryp-

anosoma cruzi. Antimicrob. Agents Chemother. 49

126 – 130.

Fournet A. and Munoz V. (2002), Natural products as 

trypanocidal, antileishmanial and antimalarial drugs. 

Curr. Top. Med. Chem. 

2,  1215 – 1237.

González A. G., Bermejo J., Diaz J., Rodriguez E. M., 

Perez A., Yanes A., Rauter P., and Pozo J. (1990), Di-

terpenes and other constituents of 



Eupatorium sal-

via. Phytochemistry 29,  321 – 323.

Hoffmann A., Lastra J., Veghazi E., and Farga C. (1992), 

Plantas medicinales de uso común en Chile, 2 ed. 

Fundación Cludio Gay, Santiago, Chile, p. 273.

Table III. Activity of compounds isolated from 

Drimys 

winteri upon the Trypanosoma cruzi trypomastigote 

form.


Compound

IC

50



 [

µ

M

]



Isodrimenin

27.9  0.3 

Drimenol

25.1  0.5 

Polygodial

120.4  1.5 

Nifurtimox

16.1  0.2 

Benznidazole

32.2  0.3 

The activity was measured on 

T. cruzi trypomastigotes 

using the MTT method at the concentrations of 10, 15, 

20, 50, 100, and 200 

µ

M

. IC



50

 values were calculated from 

drug concentration-response curves (see Experimental). 

Results are shown as the average  standard deviation 

of three independent experiments.

Fig. 1. Chemical structure of compounds isolated from 



Drimys winteri.

R

1



R

2

O



O

Polygodial     R

1

= R


= CHO


Drimenol       R

1

= CH



2

OH; R


=CH


3

Isodrimenin




202

O. M. Muñoz 



et al. · Antichagasic Plant Extracts

Houghton P. and Manby J. (1998), Medicinal plants of 

the Mapuche. J. Ethnopharmacol. 

13,  89 – 103.

Jansen B. M. and Groot A. (2004), Occurrence, bio-

logical activity and synthesis of drimane sesquiterpe-

noids. Nat. Prod. Rep. 



21,  449 – 477.

Kubo I., Fujita K., and Lee S. H. (2001), Antifungal 

mechanism of polygodial. J. Agric. Food Chem. 

49

1607 – 1611.

Kubo I., Fujita K., Lee B., and Ha T. J. (2005), Anti-

bacterial activity of polygodial. Phytother. Res. 



19

1013 – 1017.

Maguire J. H. (2006), Chagas’ disease – Can we stop the 

deaths? N. Engl. J. Med. 



355,  760 – 761.

Maya J. D., Cassels B. K., Vasquez P., Ferreira J., 

 Faúndez M., Galanti N., Ferreira A., and Morello A. 

(2007), Mode of action of natural and synthetic drugs 

against 

Trypanosoma cruzi and their interaction with 

the mammalian host. Comp. Biochem. Physiol. Part 

A: Mol. Integr. Physiol. 

146,  601 – 620.

McCallion R. F. (1982), Antibiotic substances from 

New Zealand plants. II. Polygodial, an anti-

Candida 

agent from 



Pseudowintera colorata. Planta Med. 44

134 – 138.

Mosmann T. (1983), Rapid colorimetric assay for cel-

lular growth and survival: application to prolifera-

tion and cytotoxicity assays. J. Immunol. Methods 

65

55 – 63.


Muñoz O. and Fajardo V. (eds.) (2005), Flora de Chile: 

Biologí a, farmacologí 

a y quí 

mica. Universidad de 

Playa Ancha, Valparaíso, Chile, p. 227.

Muñoz O., Montes M., and Wilkomirsky T. (2001), 

Plantas medicinales de uso en Chile: Quí 

mica y 


Farmacologí a, 2 ed. Editorial Universitaria, Santiago, 

Chile.


Ruiz A., Gutierrez I., Mardones C., Vergara C., Herlitz 

E., Vega M., Dorau C., Winterhalter P., and Von Baer 

D. (2010), Polyphenols and antioxidant activity of ca-

lafate (


Berberis microphylla ) fruits and other native 

berries from Southern Chile. J. Agric. Food Chem. 



58

6081 – 6089.

Salas C., Faundez M., Morello A., Maya J. D., and Tapia 

R. (2011), Natural and synthetic naphthoquinones 

active against 

Trypanosoma cruzi: an inicial step 

towards new drugs for Chagas disease. Curr. Med. 

Chem. 

18,  144 – 161.

San Martin J. (1983), Medicinal plants in Central Chile. 

Econ. Bot. 

37,  216 – 227.

White J. D. and Burton P. J. (1985), Synthese of the 

insect antifeedant ()-cinnamodial and the drimane 

sesquiterpenoids ()-isodrimenin and ()-fragrolide. 

J. Org. Chem. 

50,  357 – 364.

Zapata N., Budia F., Viñuela E., and Medina P. (2009), 

Antifeedant and growth inhibitory effects of extracts 

and drimanes of 



Drimys winteri stem bark against 

Spodoptera littoralis (Lep., Noctuidae). Ind. Crops 

Prod.


 30,  119 – 125.

Yüklə 78,06 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə