E conjecture



Yüklə 0,93 Mb.
Pdf görüntüsü
tarix01.08.2018
ölçüsü0,93 Mb.
#59913


THE POINCAR ´

E CONJECTURE

JOHN MILNOR

1. Introduction

The topology of two-dimensional manifolds or surfaces was well understood in

the 19th century. In fact there is a simple list of all possible smooth compact

orientable surfaces. Any such surface has a well-defined genus g ≥ 0, which can

be described intuitively as the number of holes; and two such surfaces can be put

into a smooth one-to-one correspondence with each other if and only if they have

the same genus.

1

The corresponding question in higher dimensions is much more



Figure 1. Sketches of smooth surfaces of genus 0, 1, and 2.

difficult.


Henri Poincar´

e was perhaps the first to try to make a similar study

of three-dimensional manifolds. The most basic example of such a manifold is

the three-dimensional unit sphere, that is, the locus of all points (x, y, z, w) in

four-dimensional Euclidean space which have distance exactly 1 from the origin:

x

2



+ y

2

+ z



2

+ w


2

= 1. He noted that a distinguishing feature of the two-dimensional

sphere is that every simple closed curve in the sphere can be deformed continuously

to a point without leaving the sphere. In 1904, he asked a corresponding question

in dimension 3. In more modern language, it can be phrased as follows:

2

Question. If a compact three-dimensional manifold M



3

has the property that every

simple closed curve within the manifold can be deformed continuously to a point,

does it follow that M

3

is homeomorphic to the sphere S



3

?

He commented, with considerable foresight, “Mais cette question nous entraˆıne-



rait trop loin”.

Since then, the hypothesis that every simply connected closed

3-manifold is homeomorphic to the 3-sphere has been known as the Poincar´

e Con-


jecture. It has inspired topologists ever since, and attempts to prove it have led to

many advances in our understanding of the topology of manifolds.

1

For definitions and other background material, see, for example, [21] or [29], as well as [48].



2

See [36, pages 498 and 370]. To Poincar´

e, manifolds were always smooth or polyhedral, so

that his term “homeomorphism” referred to a smooth or piecewise linear homeomorphism.

1



2

JOHN MILNOR

2. Early Missteps

From the first, the apparently simple nature of this statement has led mathe-

maticians to overreach. Four years earlier, in 1900, Poincar´

e himself had been the

first to err, stating a false theorem that can be phrased as follows.

False Theorem. Every compact polyhedral manifold with the homology of an n-

dimensional sphere is actually homeomorphic to the n-dimensional sphere.

But his 1904 paper provided a beautiful counterexample to this claim, based

on the concept of fundamental group, which he had introduced earlier (see [36,

pp. 189–192 and 193–288]). This example can be described geometrically as fol-

lows. Consider all possible regular icosahedra inscribed in the two-dimensional

unit sphere. In order to specify one particular icosahedron in this family, we must

provide three parameters. For example, two parameters are needed to specify a

single vertex on the sphere, and then another parameter to specify the direction

to a neighboring vertex. Thus each such icosahedron can be considered as a single

“point” in the three-dimensional manifold M

3

consisting of all such icosahedra.



3

This manifold meets Poincar´

e’s preliminary criterion: By the methods of homology

theory, it cannot be distinguished from the three-dimensional sphere. However, he

could prove that it is not a sphere by constructing a simple closed curve that cannot

be deformed to a point within M

3

. The construction is not difficult: Choose some



representative icosahedron and consider its images under rotation about one vertex

through angles 0 ≤ θ ≤ 2π/5. This defines a simple closed curve in M

3

that cannot



be deformed to a point.

Figure 2. The Whitehead link

The next important false theorem was by Henry Whitehead in 1934 [52]. As

part of a purported proof of the Poincar´

e Conjecture, he claimed the sharper state-

ment that every open three-dimensional manifold that is contractible (that can be

continuously deformed to a point) is homeomorphic to Euclidean space. Following

in Poincar´

e’s footsteps, he then substantially increased our understanding of the

topology of manifolds by discovering a counterexample to his own theorem. His

counterexample can be briefly described as follows. Start with two disjoint solid

tori T


0

and T


1

in the 3-sphere that are embedded as shown in Figure 2, so that

each one individually is unknotted, but so that the two are linked together with

linking number zero. Since T

1

is unknotted, its complement T



1

= S


3

interior(T

1

)

3



In more technical language, this M

3

can be defined as the coset space SO(3)/I



60

where SO(3)

is the group of all rotations of Euclidean 3-space and where I

60

is the subgroup consisting of the 60



rotations that carry a standard icosahedron to itself. The fundamental group π

1

(M



3

), consisting

of all homotopy classes of loops from a point to itself within M

3

, is a perfect group of order 120.




THE POINCAR ´

E CONJECTURE

3

is another unknotted solid torus that contains T



0

. Choose a homeomorphism h of

the 3-sphere that maps T

0

onto this larger solid torus T



1

. Then we can inductively

construct solid tori

T

0



⊂ T

1

⊂ T



2

⊂ · · ·


in S

3

by setting T



j+1

= h(T


j

). The union M

3

=

T



j

of this increasing sequence is

the required Whitehead counterexample, a contractible manifold that is not home-

omorphic to Euclidean space. To see that π

1

(M

3



) = 0, note that every closed loop

in T


0

can be shrunk to a point (after perhaps crossing through itself) within the

larger solid torus T

1

. But every closed loop in M



3

must be contained in some T

j

,

and hence can be shrunk to a point within T



j+1

⊂ M


3

. On the other hand, M

3

is

not homeomorphic to Euclidean 3-space since, if K ⊂ M



3

is any compact subset

large enough to contain T

0

, one can prove that the difference set M



3

K is not


simply connected.

Since this time, many false proofs of the Poincar´

e Conjecture have been proposed,

some of them relying on errors that are rather subtle and difficult to detect. For a

delightful presentation of some of the pitfalls of three-dimensional topology, see [4].

3. Higher Dimensions

The late 1950s and early 1960s saw an avalanche of progress with the discovery

that higher-dimensional manifolds are actually easier to work with than three-

dimensional ones. One reason for this is the following: The fundamental group

plays an important role in all dimensions even when it is trivial, and relations

between generators of the fundamental group correspond to two-dimensional disks,

mapped into the manifold. In dimension 5 or greater, such disks can be put into

general position so that they are disjoint from each other, with no self-intersections,

but in dimension 3 or 4 it may not be possible to avoid intersections, leading to

serious difficulties.

Stephen Smale announced a proof of the Poincar´

e Conjecture in high dimensions

in 1960 [41]. He was quickly followed by John Stallings, who used a completely

different method [43], and by Andrew Wallace, who had been working along lines

quite similar to those of Smale [51].

Let me first describe the Stallings result, which has a weaker hypothesis and

easier proof, but also a weaker conclusion. He assumed that the dimension is seven

or more, but Christopher Zeeman later extended his argument to dimensions 5 and

6 [54].


Stallings–Zeeman Theorem. If M

n

is a finite simplicial complex of dimension



n ≥ 5 that has the homotopy type

4

of the sphere S



n

and is locally piecewise linearly

homeomorphic to the Euclidean space R

n

, then M



n

is homeomorphic to S

n

under


a homeomorphism that is piecewise linear except at a single point. In other words,

the complement M

n

(point) is piecewise linearly homeomorphic to R



n

.

The method of proof consists of pushing all of the difficulties off toward a single



point; hence there can be no control near that point.

4

In order to check that a manifold M



n

has the same homotopy type as the sphere S

n

, we must



check not only that it is simply connected, π

1

(M



n

) = 0, but also that it has the same homology

as the sphere. The example of the product S

2

× S



2

shows that it is not enough to assume that

π

1

(M



n

) = 0 when n > 3.




4

JOHN MILNOR

The Smale proof, and the closely related proof given shortly afterward by Wal-

lace, depended rather on differentiable methods, building a manifold up inductively,

starting with an n-dimensional ball, by successively adding handles. Here a k-handle

can be added to a manifold M

n

with boundary by first attaching a k-dimensional



cell, using an attaching homeomorphism from the (k − 1)-dimensional boundary

sphere into the boundary of M

n

, and then thickening and smoothing corners so as



to obtain a larger manifold with boundary. The proof is carried out by rearranging

and canceling such handles. (Compare the presentation in [24].)

Figure 3. A three-dimensional ball with a 1-handle attached

Smale Theorem. If M

n

is a differentiable homotopy sphere of dimension n ≥ 5,



then M

n

is homeomorphic to S



n

. In fact, M

n

is diffeomorphic to a manifold



obtained by gluing together the boundaries of two closed n-balls under a suitable

diffeomorphism.

This was also proved by Wallace, at least for n ≥ 6. (It should be noted that

the five-dimensional case is particularly difficult.)

The much more difficult four-dimensional case had to wait twenty years, for the

work of Michael Freedman [8]. Here the differentiable methods used by Smale and

Wallace and the piecewise linear methods used by Stallings and Zeeman do not

work at all. Freedman used wildly non-differentiable methods, not only to prove

the four-dimensional Poincar´

e Conjecture for topological manifolds, but also to give

a complete classification of all closed simply connected topological 4-manifolds. The

integral cohomology group H

2

of such a manifold is free abelian. Freedman needed



just two invariants: The cup product β : H

2

⊗ H



2

→ H


4

= Z is a symmetric



bilinear form with determinant ±1, while the Kirby–Siebenmann invariant κ is an

integer mod 2 that vanishes if and only if the product manifold M

4

× R can be



given a differentiable structure.

Freedman Theorem. Two closed simply connected 4-manifolds are homeomor-

phic if and only if they have the same bilinear form β and the same Kirby–Sieben-

mann invariant κ. Any β can be realized by such a manifold. If β(x ⊗ x) is odd

for some x ∈ H

2

, then either value of κ can be realized also. However, if β(x ⊗ x)



is always even, then κ is determined by β, being congruent to one eighth of the

signature of β.




THE POINCAR ´

E CONJECTURE

5

In particular, if M



4

is a homotopy sphere, then H

2

= 0 and κ = 0, so M



4

is homeomorphic to S

4

. It should be noted that the piecewise linear or differen-



tiable theories in dimension 4 are much more difficult. It is not known whether

every smooth homotopy 4-sphere is diffeomorphic to S

4

; it is not known which 4-



manifolds with κ = 0 actually possess differentiable structures; and it is not known

when this structure is essentially unique. The major results on these questions are

due to Simon Donaldson [7]. As one indication of the complications, Freedman

showed, using Donaldson’s work, that R

4

admits uncountably many inequivalent



differentiable structures. (Compare [12].)

In dimension 3, the discrepancies between topological, piecewise linear, and dif-

ferentiable theories disappear (see [18], [28], and [26]). However, difficulties with

the fundamental group become severe.

4. The Thurston Geometrization Conjecture

In the two-dimensional case, each smooth compact surface can be given a beauti-

ful geometrical structure, as a round sphere in the genus zero case, as a flat torus in

the genus 1 case, and as a surface of constant negative curvature when the genus is 2

or more. A far-reaching conjecture by William Thurston in 1983 claims that some-

thing similar is true in dimension 3 [46]. This conjecture asserts that every compact

orientable three-dimensional manifold can be cut up along 2-spheres and tori so as

to decompose into essentially unique pieces, each of which has a simple geometri-

cal structure. There are eight possible three-dimensional geometries in Thurston’s

program. Six of these are now well understood,

5

and there has been a great deal of



progress with the geometry of constant negative curvature.

6

The eighth geometry,



however, corresponding to constant positive curvature, remains largely untouched.

For this geometry, we have the following extension of the Poincar´

e Conjecture.

Thurston Elliptization Conjecture. Every closed 3-manifold with finite funda-

mental group has a metric of constant positive curvature and hence is homeomorphic

to a quotient S

3

/Γ, where Γ ⊂ SO(4) is a finite group of rotations that acts freely



on S

3

.



The Poincar´

e Conjecture corresponds to the special case where the group Γ ∼

=

π

1



(M

3

) is trivial. The possible subgroups Γ ⊂ SO(4) were classified long ago by



[19] (compare [23]), but this conjecture remains wide open.

5. Approaches through Differential Geometry

and Differential Equations

7

In recent years there have been several attacks on the geometrization problem



(and hence on the Poincar´

e Conjecture) based on a study of the geometry of the

infinite dimensional space consisting of all Riemannian metrics on a given smooth

three-dimensional manifold.

5

See, for example, [13], [3], [38, 39, 40], [49], [9], and [6].



6

See [44], [27], [47], [22], and [30]. The pioneering papers by [14] and [50] provided the basis

for much of this work.

7

Added in 2004




6

JOHN MILNOR

By definition, the length of a path γ on a Riemannian manifold is computed, in

terms of the metric tensor g

ij

, as the integral



γ

ds =


γ

g

ij



dx

i

dx



j

.

From the first and second derivatives of this metric tensor, one can compute the



Ricci curvature tensor R

ij

, and the scalar curvature R. (As an example, for the flat



Euclidean space one gets R

ij

= R = 0, while for a round three-dimensional sphere



of radius r, one gets Ricci curvature R

ij

= 2g



ij

/r

2



and scalar curvature R = 6/r

2

.)



One approach by Michael Anderson, based on ideas of Hidehiko Yamabe [53],

studies the total scalar curvature

M

3

R dV as a functional on the space of all



smooth unit volume Riemannian metrics. The critical points of this functional are

the metrics of constant curvature (see [1]).

A different approach, initiated by Richard Hamilton studies the Ricci flow [15,

16, 17], that is, the solutions to the differential equation

dg

ij

dt



= −2R

ij

.



In other words, the metric is required to change with time so that distances de-

crease in directions of positive curvature. This is essentially a parabolic differential

equationa and behaves much like the heat equation studied by physicists: If we heat

one end of a cold rod, then the heat will gradually flow throughout the rod until

it attains an even temperature. Similarly, a naive hope for 3-manifolds with finite

fundamental group might have been that, under the Ricci flow, positive curvature

would tend to spread out until, in the limit (after rescaling to constant size), the

manifold would attain constant curvature. If we start with a 3-manifold of posi-

tive Ricci curvature, Hamilton was able to carry out this program and construct a

metric of constant curvature, thus solving a very special case of the Elliptization

Conjecture. However, in the general case, there are very serious difficulties, since

this flow may tend toward singularities.

8

I want to thank many mathematicians who helped me with this report.



May 2000, revised June 2004

References

[1] M.T. Anderson, Scalar curvature, metric degenerations and the static vacuum Einstein equa-

tions on 3-manifolds, Geom. Funct. Anal. 9 (1999), 855–963 and 11 (2001) 273–381. See also:

Scalar curvature and the existence of geometric structures on 3-manifolds, J. reine angew.

Math. 553 (2002), 125–182 and 563 (2003), 115–195.

[2] M.T. Anderson, Geometrization of 3-manifolds via the Ricci flow, Notices AMS 51 (2004),

184–193.


[3] L. Auslander and F.E.A. Johnson, On a conjecture of C.T.C. Wall, J. Lond. Math. Soc. 14

(1976), 331–332.

[4] R.H. Bing, Some aspects of the topology of 3-manifolds related to the Poincar´

e conjecture,

in Lectures on Modern Mathematics II (T. L. Saaty, ed.), Wiley, New York, 1964.

[5] J. Birman, Poincar´

e’s conjecture and the homeotopy group of a closed, orientable 2-manifold,

J. Austral. Math. Soc. 17 (1974), 214–221.

8

Grisha Perelman, in St. Petersburg, has posted three preprints on arXiv.org which go a long



way toward resolving these difficulties, and in fact claim to prove the full geometrization conjecture

[32, 33, 34]. These preprints have generated a great deal of interest. (Compare [2] and [25], as

well as the website http://www.math.lsa.umich.edu/research/ricciflow/perelman.html organized

by B. Kleiner and J. Lott.) However, full details have not appeared.




THE POINCAR ´

E CONJECTURE

7

[6] A. Casson and D. Jungreis, Convergence groups and Seifert fibered 3-manifolds, Invent. Math.



118 (1994), 441–456.

[7] S.K. Donaldson, Self-dual connections and the topology of smooth 4-manifolds, Bull. Amer.

Math. Soc. 8 (1983), 81–83.

[8] M.H. Freedman, The topology of four-dimensional manifolds, J. Diff. Geom. 17 (1982), 357–

453.

[9] D. Gabai, Convergence groups are Fuchsian groups, Ann. Math. 136 (1992), 447–510.



[10] D. Gabai, Valentin Poenaru’s program for the Poincar´

e conjecture, in Geometry, topology,

& physics, Conf. Proc. Lecture Notes Geom. Topology, VI, Internat. Press, Cambridge, MA,

1995, 139–166.

[11] D. Gillman and D. Rolfsen, The Zeeman conjecture for standard spines is equivalent to the

Poincar´


e conjecture, Topology 22 (1983), 315–323.

[12] R. Gompf, An exotic menagerie, J. Differential Geom. 37 (1993) 199–223.

[13] C. Gordon and W. Heil, Cyclic normal subgroups of fundamental groups of 3-manifolds,

Topology 14 (1975), 305–309.

[14] W. Haken, ¨

Uber das Hom¨

oomorphieproblem der 3-Mannigfaltigkeiten I, Math. Z. 80 (1962),

89–120.


[15] R.S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17

(1982), 255–306.

[16] R.S. Hamilton, The formation of singularities in the Ricci flow, in Surveys in differential

geometry, Vol. II (Cambridge, MA, 1993), Internat. Press, Cambridge, MA, 1995, 7–136.

[17] R.S. Hamilton, Non-singular solutions of the Ricci flow on three-manifolds Comm. Anal.

Geom. 7 (1999), 695–729.

[18] M. Hirsch, Obstruction theories for smoothing manifolds and maps, Bull. Amer. Math. Soc.

69 (1963), 352-356.

[19] H. Hopf, Zum Clifford–Kleinschen Raumproblem, Math. Ann. 95 (1925-26) 313-319.

[20] W. Jakobsche, The Bing-Borsuk conjecture is stronger than the Poincar´

e conjecture, Fund.

Math. 106 (1980), 127–134.

[21] W.S. Massey, Algebraic Topology:

An Introduction, Harcourt Brace, New York, 1967;

Springer, New York 1977; or A Basic Course in Algebraic Topology, Springer, New York,

1991.


[22] C. McMullen, Riemann surfaces and geometrization of 3-manifolds, Bull. Amer. Math. Soc.

27 (1992), 207–216.

[23] J. Milnor, Groups which act on S

n

without fixed points, Amer. J. Math. 79 (1957), 623–630.



[24] J. Milnor (with L. Siebenmann and J. Sondow), Lectures on the h-Cobordism Theorem,

Princeton Math. Notes, Princeton University Press, Princeton, 1965.

[25] J. Milnor, Towards the Poincar´

e conjecture and the classification of 3-manifolds, Notices

AMS 50 (2003), 1226–1233.

[26] E.E. Moise, Geometric Topology in Dimensions 2 and 3, Springer, New York, 1977.

[27] J. Morgan, On Thurston’s uniformization theorem for three-dimensional manifolds, in The

Smith Conjecture (H. Bass and J. Morgan, eds.), Pure and Appl. Math. 112, Academic Press,

New York, 1984, 37–125.

[28] J. Munkres, Obstructions to the smoothing of piecewise-differentiable homeomorphisms, Ann.

Math. 72 (1960), 521–554.

[29] J. Munkres, Topology: A First Course, Prentice–Hall, Englewood Cliffs, NJ, 1975.

[30] J.-P. Otal, The hyperbolization theorem for fibered 3-manifolds, translated from the 1996

French original by Leslie D. Kay, SMF/AMS Texts and Monographs 7, American Mathemat-

ical Society, Providence, RI; Soci´

et´


e Mathatique de France, Paris, 2001.

[31] C. Papakyriakopoulos, A reduction of the Poincar´

e conjecture to group theoretic conjectures,

Ann. Math. 77 (1963), 250–305.

[32] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:

math.DG/0211159v1, 11 Nov 2002.

[33] G. Perelman, Ricci flow with surgery on three-manifolds, arXiv: math.DG/0303109, 10 Mar

2003.


[34] G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-

manifolds, arXiv: math.DG/0307245, 17 Jul 2003.




8

JOHN MILNOR

[35] V. Po´

enaru, A program for the Poincar´

e conjecture and some of its ramifications, in Topics

in low-dimensional topology (University Park, PA, 1996), World Sci. Publishing, River Edge,

NJ, 1999, 65–88.

[36] H. Poincar´

e, Œuvres, Tome VI, Gauthier–Villars, Paris, 1953.

[37] C. Rourke, Algorithms to disprove the Poincar´

e conjecture, Turkish J. Math. 21 (1997),

99–110.


[38] P. Scott, A new proof of the annulus and torus theorems, Amer. J. Math. 102 (1980), 241–

277.


[39] P. Scott, There are no fake Seifert fibre spaces with infinite π

1

, Ann. Math. 117 (1983),



35–70.

[40] P. Scott, The geometries of 3-manifolds, Bull. Lond. Math. Soc. 15 (1983), 401–487.

[41] S. Smale, Generalized Poincar´

e’s conjecture in dimensions greater than four, Ann. Math. 74

(1961), 391–406. (See also: Bull. Amer. Math. Soc. 66 (1960), 373–375.)

[42] S. Smale, The story of the higher dimensional Poincar´

e conjecture (What actually happened

on the beaches of Rio), Math. Intelligencer 12, no. 2 (1990), 44–51.

[43] J. Stallings, Polyhedral homotopy spheres, Bull. Amer. Math. Soc. 66 (1960), 485–488.

[44] D. Sullivan, Travaux de Thurston sur les groupes quasi-fuchsiens et sur les vari´

et´

es hyper-



boliques de dimension 3 fibr´

ees sur le cercle, S´

em. Bourbaki 554, Lecture Notes Math. 842,

Springer, New York, 1981.

[45] T.L. Thickstun, Open acyclic 3-manifolds, a loop theorem and the Poincar´

e conjecture, Bull.

Amer. Math. Soc. (N.S.) 4 (1981), 192–194.

[46] W.P. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, in

The Mathematical heritage of Henri Poincar´

e, Proc. Symp. Pure Math. 39 (1983), Part 1.

(Also in Bull. Amer. Math. Soc. 6 (1982), 357–381.)

[47] W.P. Thurston, Hyperbolic structures on 3-manifolds, I, deformation of acyclic manifolds,

Ann. Math. 124 (1986), 203–246

[48] W.P. Thurston, Three-Dimensional Geometry and Topology, Vol. 1, ed. by Silvio Levy,

Princeton Mathematical Series 35, Princeton University Press, Princeton, 1997.

[49] P. Tukia, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988),

1–54.

[50] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. Math. 87 (1968),



56–88.

[51] A. Wallace, Modifications and cobounding manifolds, II, J. Math. Mech 10 (1961), 773–809.

[52] J.H.C. Whitehead, Mathematical Works, Volume II, Pergamon Press, New York, 1962. (See

pages 21-50.)

[53] H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math.

J. 12 (1960), 21–37.

[54] E.C. Zeeman, The Poincar´

e conjecture for n ≥ 5 , in Topology of 3-Manifolds and Related

Topics Prentice–Hall, Englewood Cliffs, NJ, 1962, 198–204. (See also Bull. Amer. Math. Soc.

67 (1961), 270.)

(Note: For a representative collection of attacks on the Poincar´

e Conjecture, see



[31], [5], [20], [45], [11], [10], [37], and [35].)

Yüklə 0,93 Mb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə