Fizika-texnika fakulteti


Izotrop va anizotrop muhitlarning optik xossalari



Yüklə 218,54 Kb.
səhifə6/8
tarix28.05.2022
ölçüsü218,54 Kb.
#88220
1   2   3   4   5   6   7   8
Isoqov Ot1a11bek

2.3. Izotrop va anizotrop muhitlarning optik xossalari
Qattiq jism lazerlariga misol sifatida yoqut, ittriy – alyuminiy granati (IAG) va shisha lazerlarini ko’rsatish mumkin. Aktiv ionlar kristallik yoki amorf jismlar panjaralariga aralashma sifatida kiritiladi. Qattiq jismlar lazerlarining aktiv moddalari uch va to’rt energetik sathlidir. Qattiq jism lazerini ishlatish qulay, oson va quvvati juda katta. Lazerlarning taraqqiyoti umuman qattiq jism lazerlaridan boshlangan. Bu tipdagi lazerlar amalda keng qo’llaniladi. Ayrim qattiq jism lazerlarini batafsil qarab chiqamiz.
Yoqut lazeri. Yoqut kristalli – aralashmasidan iborat bo’lib, geksogonal (romboedrik kristallik panjarasiga ega) kristallik sistemasiga kiradi. Bu kristall bir o’qli, optik jihatdan anizotropik, qattiqligi jihatidan olmosdan keyin turadi. Yoqut kristallining asosini –korund (sapfir) tashkil etib, optik jihatidan tiniqdir. Sindirish ko’rsatkichi 1,76 ga teng. Sapfirning tarkibiga 0,05% xrom oksidi qo’shilsa, u qizg’ish rangli yoqut kristallini hosil qiladi. Yoqut kristallida alyuminiy ( ) ioni xrom ioni ( ) bilan o’rin almashadi. Kristalldagi xrom ionlarining konsentrasiyasi N= tashkil qiladi. Xrom oksidining konsentrasiyasini oshira borishi rubin kristalining (rangini) tusini o’zgartiradi, ya’ni 8% dan oshishi bilan qizil yoqut kristali yashil rangli kristalga o’zgaradi.
Lazerlarda ishlatiladigan qizg’ish rangli yoqut kristalining optik xususiyati va spektroskopiyasi ancha yaxshi o’rganilgan. Yoqut kristalining ikkita kuchli yo’l – yo’l yutilish spektri ko’zga ko’rinadigan spektral oraliqda joylashgan.
Yoqut kristalining optik spektri xrom ionining energetik sathlari orasidagi o’tish bilan bog’langan. Yutilish spektri asosiy energetik sathdan yuqorida joylashgan ikkita energetik sathlarga o’tish bilan aniqlanadi, ya’ni . O’sha o’tish optic damlash sifatida ishlatiladi.
Quyida yutilish spektri keltirilgan:

Yutilish spektri asosiy energetik sathdan yuqorida joylashgan ikkita energetik sathlarga o’tish bilan aniqlanadi. O’sha o’tish optik damlash sifatida ishlatiladi. Keyingi rasmda esa xrom ionining sodda va ishlatiladigan energetik sathlari tasvirlangan. Shuni xam aytish kerakki, katta to’lqinli yutilish yo’lining qanotida kuchsiz, ammo yaqqol R, yutilish chizig’i ham mavjud. Uy haroratida o’sha R, yutilish chizig’ining spektral kengligi 16 ga teng. Yutilish spektrining hosil bo’lishi xrom ionining asosiy energetik sathdan yuqorida joylashgan 2Ye energetik sathga o‟tishi bilan tushuntiriladi. Oktaedrik kristall maydoni ta‟sirida sath ikkita energetik sathlarga parchalangan va energetik sathlar oralig’i 29 ni tashkil etadi. 77K da 2Ye ning noziq strukturasi kuzatiladi va ikki chastotali lazer nurlanishini hosil qiladi. Past temperaturada lyuminessensiya nurlanish spektri ham ikkita spektral chiziqni hosil qiladi. Uy haroratida (300K) lyuminessensiya chizig’ining spektral kengligi 11 ni va 71K da esa 0,1 ni tashkil qiladi. 2Ye energetik sath metastabil holat bo’lib elektronning yashash vaqti 300K da =2,9ms, 77K da esa 4,3mks. Ye energetik sathda 2A energetik sathga qaraganda yashash vaqti kichik, bu esa Ye metastabil holatda inversion ko’chganlik zichligini oshiradi. Xrom ionning asosiy energetik sathi ham ikkita energetik sathga ajralgan va bu energetik sathlarning oralig’i 0,39 ga teng. Yoqut lazeri birinchi marta 1960- yilda ishga tushirildi va hozirgi kunda ham u o’ziga diqqat – e’tiborini jalb qilib kelmoqda. Bu lazer ko’zga ko’rinadigan kogerent yorug’lik (λ=694,3nm) nurini chiqaradi. Yoqut kristalidan sterjen (qalamcha) tayyorlandi va sterjenning kesimlari juda silliq o’zaro parallel bo’ladi. Xrom ionlarini uyg’otish uchun optik damlashdan foydalaniladi. Chaqmoq lampasidan tarqalayotgan boy spektrli yorug’lik nurlari Yoqut kristalida yutilib, xrom ionlarini asosiy energetik sath dan va sathlarga ko’chiradi. Ionlarning uchinchi energetik sathdan ikkinchi energetik sathga o’tish ehtimoli katta. ( =0,6∙ ) bo’lgani uchun ionlar tezda nurlanmasdan ikkinchi sathga tushadi. Ye energetik sath ikkita 2A va Ye alohida – alohida energetik sathlardan tashkil topgan. Uy haroratida uyg’ongan ionlar → o’tishi λ=694,3nm, lyuminessensiya nurlanishini hosil qiladi va spektrning kengligi 11 см , kvant energetik o’tishlarining kesimi σ=2,5∙ va foton energiyasi hv=2,8∙ J. Lazer nurlanishi 2A→ va → o‟tishlarda kuzatiladi. Yoqut lazeri generasiyasining quyi chegarasini aniqlashni qaraymiz. Generasiyaning quyi chegarasiga mos kelgan inversion ko’chganlikning qiymati = = ga teng. Yoqut sterjenining uzunligi 5sm, diametri 0,8sm. Agar chaqmoq lampasining 10% yorug’lik energiyasi, Yoqut kristalining yutilish spektriga mos kelganda, yorituvchi sistemaning effektivligi 20% ni tashkil qilsa, lampaning elektr energiyasidan yorug’lik energiyasiga aylantirishning effektivligi 50% ni tashkil qiladi, u holda generatsiyaning quyi chegarasini hosil qiluvchi chaqmoq lampasining energiya zichligi quyidagicha topiladi:
= =300
Farz qilaylik, inversiya hosil qilgan aktiv Yoqut sterjenning ixtiyoriy nuqtasida, spontan ravishda nurlanish boshlansin. Nurlanish tartibsiz turli yo’nalishlar bo’ylab tarqaladi, ulardan biri albatta sterjenning o’qi bo’ylab yoki o’qiga parallel yo’nalishda ham tarqaladi. Sterjenning o’qiga burchak ostida yo’nalgan yorug’lik fotonlari aktiv sterjendan chiqib yo’qoladi va generasiyada qatnashmaydi. Aktiv sterjenning o’qi bo’ylab tarqalayotgan yorug’lik yo’lida uchragan aktiv markazlarni majburiy nurlantirib kuchayadi. Elektromagnit to’lqinning amplitudasi maksimum (botiq va qavariq) nuqtalarida aktiv markazlar jadal sur’atlar bilan bo’shaydi. Generatsiya boshlanishi spontan nurlanishdan boshlanib, keyin majburiy nurlanish kuchayib, spontan nurlanish juda kuchsizlanib qoladi. Kuchaygan yorug’lik aktiv sterjendan chiqib, rezonator ko’zgulariga tushadi va ko’zgulardan qaytib yana aktiv sterjenga kiritiladi, natijada ikki ko’zgu oralig’ida turg’un to’lqin hosil bo’ladi. Aktiv sterjenning ikki kesimidan chiqayotgan yorug’lik to’lqinlari qarama – qarshi tomonlardagi ko’zgulardan bir necha yuzlab marta qaytib, aktiv sterjen orqali o’tib, oxiri rezonator oralig’ida katta energiyali Yoqut lazeri generasiyasining spektrini o’rganish sxemasi
monoxfromatik yorug’lik to’planadi va qaytarish koeffisiyenti kichik bo’lgan ko’zgu orqali tashqariga lazer nuri bo’lib tarqaladi (yuqoridagi rasmga qarang). Rezonatordan chiqayotgan lazer nurlanishini kuzatish uchun oq qog’ozdan ekran yasab, nur yo’liga qo’yib ekranning yuzida yarqillagan qizil rangli dog’ni ko’rish kifoya. Xavfsizlik texnikasiga ko’ra lazer nurlarini bevosita ko’z bilan qarab kuzatish mumkin emas, hattoki qog’oz ekran yaltiroq bo’lmasdan diffuziyali qaytaradigan bo’lishi lozim.

Yoqut lazerining tuzilishi va vaqt rejimini kuzatish sxemasi. -rezonator ko’zgulari , L1-chaqmoq lampasi, L-lazer nurini sochuvchi linza, D-kichik tirqishli diafragma,F-5-fotoelement,NS-neytral svetofiltr.
Lazer nurlanishining vaqtli rejimini kuzatishda fotoelement yoki foto ko’paytirgich bilan ossillograf dan foydalaniladi (yuqoridagi rasmga). Lazer nurini svetofiltrlar yordamida kuchsizlantirib
,
Yoqut lazerining ifodalovchi pichkali rejimini ifodalovchi ossillogramma.
fotoelement ekraniga yo’naltiriladi va ossillograf ekranida kuzatish olib boriladi. Yoqut lazerining intensivligi vaqtga bog’liq ravishda tartibsiz o’zgaradi. Nurlanish generasiyasi alohida–alohida impulschalardan iborat bo’lib, u impulschalar intensivligi, ketma-ketligi, vaqt intervali va chastotasi (modalar tarkibi) ham tartibsiz o’zgaradi. Lazer nurlanishining shu xildagi ko’rinishini “erkin” generatsiya rejimi deb ataladi. yuqoridagi rasmga Yoqut lazerining pichkali rejimi keltirilgan. Har bir lazer nurlanishining intensivligi optik damlash quvvatiga bog’liq ravishda o’zgaradi va impulschalar soni yuzta va undan ham ko’p bo’lishi mumkin. Har bir pichkaning nurlanish vaqti qisqa bo’lib, bir mikrosekund atrofida bo’ladi, lekin ularning intensivligi biridan ikkinchisiga o’tganda tartibsiz o’zgaradi, shuningdek orasidagi masofa ham tartibsiz o’zgaradi. Chaqmok lampasining nurlanishi impulsli nurlanish bo’lib, nurlanish muddati bir necha yuz mikrosekunddan bir necha millisekundgacha uzluksiz davom etadi. Yokut lazerining spektri Fabri-Pero interferometri yordamida o’rganiladi. Rasmda Yoqut lazeri generasiyasining interferogrammasini, spektrini foto kamera yordamida yozish ko’rsatilgan. Interferogrammadan ko’rinadiki, yoqut lazeri nurining spektri ko’p aksial modali generasiyadan tashkil topgan. Generasiya spektrining vaqtga bog’liq o’zgarishidan ko’rinadiki, spektr tarkibi impulchadan impulsgacha o’tganda o’zgaradi. Yoqut kristalidagi xrom ionlarining lyuminessensiyasi bir jinsli spektral kengaygan aktiv moddalar bo’lib yakka aksial modali generasiyani hosil qilishi kerak. Generasiyaning quyi chegarasiga yaqin bo’lgan damlash energiyasida yakka modali generasiya hosil bo’ladi. Damlash energiyasini oshirish bilan aksial modalar soni ham ko’paya boradi va to’yinish qiymatiga erishadi. Lazer nurlanishining spektral kengligi damlash energiyasiga bog’liq bo’lmay qolgan holni spektral to’yinish deb yuritiladi. Ko’pchilik aksial modalarning generasiya chiqishiga sabab rezonator ko’zgulari oralig’ida turg’un to’lqin elektr maydonining bir jinsli bo’lmagan taqsimoti va u maydonning aktiv markazlarini notekis bo’shatishdir. Ikkinchidan chakmoq lampasi ishlagandan keyin undan ajralib chiqqan yorug’lik issiqlik energiyasi hisobiga aktiv modda qiziydi va spektr kengligi o’zgaradi. Rezonator ko’zgularining mexanik tebranishi kabi sabablar ham moddalar sonining o’zgarishiga va impulschali generasiyaning paydo bo’lishiga olib keladi.

Yoqut lazeri generasiyasining spektrini o’rganish sxemasi
Yoqut kristalidan chiqayotgan lazer nuri dastasining kesimi odatda ko’p sonli ingichka va bir–biriga bog’liq bo’lmagan ‘ipchalardan’ iborat bo’lib, har birining diametri 100 mikronlar atrofida bo’ladi. Shu sababli lazer nurining tarqalish burchagi nazariy jihatdan aniqlanadigan λ/D (D–lazer nuri dastasining diametri) qiymatidan o’n marta katta bo’ladi Rezonatorning alohida konstruksiyasini va optik jihatdan yuqori darajada sifatli yoqut kristalini tanlab, ko’ndalang bir modali generatsiyaga erishilsa, generasiyaning sochilish burchagi nazariy hisobga yaqin bo’ladi. Erkli rejimda ishlaydigan yoqut lazerining har bir impulsining quvvati 20kVt ni tashkil qilsa, to’la energiyasi 100 Joulgacha bo’ladi. Gigant impulsli lazerning bir impulsi 100MVt ni tashkil etadi (impuls generasiyasining vaqti 10–20 nanosekund davom etadi). Agar impuls generasiyasi yana qisqa bo’lib 10 pikosekund davom etsa, quvvati gigavattni tashkil etadi. Shunday qilib, yoqut lazeri ko’p modali erkin rejimda va gigant impulsli rejimda ishlaydi.

Yüklə 218,54 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə