General Relativity, or gr, was created in order to better understand gravity



Yüklə 457 b.
tarix25.06.2018
ölçüsü457 b.
#51851



General Relativity, or GR, was created in order to better understand gravity

  • General Relativity, or GR, was created in order to better understand gravity

  • It has helped us to answer why gravity exists

  • General Relativity has many predictions most of which have been verified by experiment with amazing accuracy



The special theory of relativity encompasses inertial frames of reference moving at uniform relative velocities

  • The special theory of relativity encompasses inertial frames of reference moving at uniform relative velocities

  • Einstein asked whether or not systems moving in nonuniform motion with respect to one another could be relative and came up with the idea of general relativity



The equivalence principle is the fundamental underpinning of general relativity, it says that:

  • The equivalence principle is the fundamental underpinning of general relativity, it says that:

  • “There is no experiment that can be done in a small confined space that can detect the difference between a uniform gravitational field and an equivalent uniform acceleration.”



Developed between 1907 and 1915

  • Developed between 1907 and 1915

  • The beginnings of GR germinate in 1907 with Einstein’s thought experiment concerning a free-falling observer that he called the happiest thought of his life: "For an observer falling freely from the roof of a house, the gravitational field does not exist"



1907- published first paper applying SR to accelerating reference frames that also predicted gravitational time dilation

  • 1907- published first paper applying SR to accelerating reference frames that also predicted gravitational time dilation

  • 1911- published paper predicting gravitational lensing

  • 1912- Einstein was focused on formulating a theory of spacetime that was purely geometrical



By 1915 Einstein had developed what are known as the Einstein Field Equations

  • By 1915 Einstein had developed what are known as the Einstein Field Equations

  • General Theory of Relativity published in Annalen der Physik in 1916



GR is a theory of gravitation that supersedes Newton’s Law of Universal Gravitation using the warping of spacetime by mass to explain gravitational attraction instead of the idea of “forces”

  • GR is a theory of gravitation that supersedes Newton’s Law of Universal Gravitation using the warping of spacetime by mass to explain gravitational attraction instead of the idea of “forces”

  • Essentially, massive bodies warp and curve their local spacetime





Geodetic Deviation

  • Geodetic Deviation

  • Frame Dragging

  • Gravitational Lensing

  • Black Holes

  • Gravitational Redshift

  • Gravity Waves



Arises from the transportation of angular momentum through gravitational field when EFE are applied to a massive body

  • Arises from the transportation of angular momentum through gravitational field when EFE are applied to a massive body

  • Massive bodies like Earth warp spacetime and a spinning object (i.e. gyroscope) orbiting the larger body will exhibit a precession of its axis of rotation

  • Gravity Probe B



Derived by Hans Thirring and Josef Lense (AKA Lense-Thirring Effect)

  • Derived by Hans Thirring and Josef Lense (AKA Lense-Thirring Effect)

  • Rotating massive bodies pull spacetime around with them

  • Frame Dragging Effect



The Gravitational Lensing effect occurs when light reaching an observer has passed by a very massive body which is heavily distorting space. The light can be seen, (of course), to bend around the body.

  • The Gravitational Lensing effect occurs when light reaching an observer has passed by a very massive body which is heavily distorting space. The light can be seen, (of course), to bend around the body.





Black Holes are the most profound prediction of general relativity

  • Black Holes are the most profound prediction of general relativity

  • A black hole is a large body of matter that is so dense that nothing can escape its gravitational attraction, at a given distance, known as the Schwarzschild radius



Gravitational redshift occurs when light leaving a massive body redshifts in order to conserve energy

  • Gravitational redshift occurs when light leaving a massive body redshifts in order to conserve energy

  • Light can also blueshift if falling into a gravity well

  • The appropriate equation for the red shift is



Fluctuation of spacetime curvature that is propagated as a wave

  • Fluctuation of spacetime curvature that is propagated as a wave

  • Radiates away from accelerating bodies

  • Carries energy away from source

  • Predicts that two massive bodies rotating about their center of mass will loose energy in the form of gravity waves and the orbit will decay



Gravity Probe B

  • Gravity Probe B

  • Black Holes

  • Eddington’s 1919 expedition to Africa

  • Pound and Rebka (Gravitational Redshift)



Collaborative experiment between NASA and Stanford

  • Collaborative experiment between NASA and Stanford

  • Utilized putting world’s most perfect gyroscopes in polar orbit around earth, launched in 2004

  • Gravity Probe B was designed to detect the Geodetic Deviation and Frame dragging effects due to the spacetime warping of the Earth



Confirmed by GP-B with total of 1% experimental uncertainty

  • Confirmed by GP-B with total of 1% experimental uncertainty

  • Hoped that by 2010 analysis will yield 0.01% uncertainty



Current data analysis yields 15% statistical uncertainty

  • Current data analysis yields 15% statistical uncertainty

  • Hoped to be down to 1% by 2010



Do they exist? FOR SURE!

  • Do they exist? FOR SURE!

  • Black Holes come in two different sizes: Stellar (5 to 20 solar masses) and supermassive (millions or billions of times the mass of the sun)

  • Black Holes are detected by either their gravitational influence on nearby bodies or through electromagnetic radiation



Measured accurate to within 0.02% of the predicted value by Pound and Rebka in 1960 in the tower of Harvard University

  • Measured accurate to within 0.02% of the predicted value by Pound and Rebka in 1960 in the tower of Harvard University



Cosmology-the ultimate fate of the universe

  • Cosmology-the ultimate fate of the universe

  • The Hawking Effect-the first combination of the quantum theory with general relativity



What have we learned from general relativity?

  • What have we learned from general relativity?

  • What can we predict using GR?

  • GR is one of the most accurate physical theories to date



Kaku, Michio. Einstein’s Cosmos. New York: W.W. Norton & Company, Inc., 2004.

  • Kaku, Michio. Einstein’s Cosmos. New York: W.W. Norton & Company, Inc., 2004.

  • Thornton, Stephen T. and Andrew Rex. Modern Physics for Scientists and Engineers. Belmont: Brooks/Cole, 2006.

  • http://einstein.stanford.edu

  • Misner, Thorne, Wheeler. Gravitation. Freeman Press, 1973.



Yüklə 457 b.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə