Hf – Hafnium Introduction



Yüklə 73,94 Kb.
Pdf görüntüsü
tarix27.02.2018
ölçüsü73,94 Kb.
#28497


Hf – Hafnium 

 

Introduction 

 

Hafnium is a member of group 4 of the 



periodic table, along with Ti and Zr.  It has an 

atomic number of 72, an atomic mass of 178, one 

oxidation state (+4) and five naturally occurring 

isotopes (

176

Hf, 


177

Hf, 


178

Hf, 


179

Hf and 


180

Hf), of 


which the latter is the most abundant at 35.44% of 

the total mass, followed by 

178

Hf and 


177

Hf at 


27.08% and 18.39% respectively.   

The geochemical properties of Hf and Zr are 

very similar since the ionic radius of Hf (71 pm) is 

almost identical to that of Zr (72 pm).  All Zr 

minerals contain Hf and pure Hf minerals are not 

commonly known.  The concentration of Hf in 

minerals rarely exceeds Zr with the exception of 

certain types of thortveitite (Sc,Y)

2

Si

2



O

7

.  Zircon 



(Zr,Hf)SiO

4

, and baddeleyite ZrO



2

, are the most 

important sources of Hf and usually contain up to 

2%.  However, some Norwegian zircon minerals 

have been found to contain 20% Hf (Wedepohl 

1978).  Hafnium is predominantly lithophile in its 

behaviour, occurring in oxides and silicates as the 

Hf

4+



 ion. 

In general, igneous and metamorphic rocks 

contain very small amounts of Hf.  Ultramafic 

rocks typically contain <1 mg kg

-1

, mafic rocks up 



to 2 mg kg

-1 


and intermediate rock types between 

2 and 4 mg kg

-1

.  Kimberlite, carbonatite and 



alkali-rich lava are commonly enriched with Hf, 

typically >8 mg kg

-1

, compared to the upper 



continental crustal average of 5.8 mg kg

-1

 



(McLennan and Taylor 1999).  Granitic rock types 

tend to contain the highest concentrations of Hf; 

Taylor (1964) suggests an average of 4 mg kg

-1

.  



Alkaline intrusions from the Lovozero Massif 

(Kola peninsula, Russia) have yielded Hf 

concentrations in excess of 100 mg kg

-1

 



(Wedepohl 1978).  Vlasov (1966) observes that 

there is no marked accumulation of Hf in 

sedimentary rocks and, with the exception of 

carbonates, all sedimentary rock types contain 

similar concentrations of Hf, typically 2.5 to 6.5 

mg kg


-1

Hafnium may be used as a pathfinder for Zr 



mineralisation.  Elevated Hf values indicate the 

presence of felsic rocks, especially intrusive 

masses. 

The Hf content in soil ranges from 1.8 to 18.7 

mg kg

-1

, depending on the parent rock type 



(Kabata-Pendias  2001).  Loess  averages  11.4 

mg kg


-1

 Hf (McLennan and Murray 1999). 

The resistate nature of Hf minerals limits the 

concentration of Hf in natural water.  In very acid 

solutions (pH≤1), Hf is present as Hf(OH)

3+



whilst at higher pH, Hf(OH)

2

2+



 is the only species 

present in solution in the absence of other 

stabilising ligands.  This complex is very stable 

and resistant to protonation (Hagfeldt et al. 2004).  

Complexes with sulphates, fluorides and chlorides 

may be poorly soluble in aqueous solution, but 

complexation with natural organic materials may 

increase the concentrations of Hf in natural 

freshwater.  Hafnium is generally present in 

natural water at concentrations less than 0.1 µg l

-1

.  


The average abundance in river particulates is 6 

mg kg


-1

 (McLennan and Murray 1999).     

Sewage is the main anthropogenic source of 

Hf, and typically contains about 3 mg kg

-1

 

(Kabata-Pendias 2001).  Hafnium is used in the 



production of electric light bulb filaments, X-ray 

cathode tubes, reactor control rods, as alloys with 

Ti, Nb, Ta, and Fe, and in the ceramics industry.  

Several investigations during the 1960s and 70s 

demonstrated that Hf concentrations were not 

elevated in areas of industrial activity, and it 

appears that geological sources of Hf are more 

important than anthropogenic ones (Wedepohl 

1978).   

Hafnium has no known biological function.  

Very little information is available concerning its 

toxicity, but it is generally regarded as being of 

low toxicity.  No negative environmental effects 

have been reported.  However, because 

insufficient data are available on the effect of Hf 

on human health, it should be regarded as 

potentially toxic. 

Table 34 compares the median concentrations 

of Hf in the FOREGS samples and in some 

reference datasets. 

 

 

 



 

 

 



187


Table 34. Median concentrations of Hf in the FOREGS samples and in some reference data sets.

 

Hafnium 



(Hf) 

Origin – Source 

Number of  

samples 

Size fraction 

mm 

Extraction 

Median 

mg kg

-1

Crust


1)

Upper continental 

n.a. 

n.a. 


Total 

5.3 


Subsoil 

FOREGS 

790 

<2.0 

Total (ICP-MS) 

5.30 

Topsoil 

FOREGS 

843 

<2.0 

Total (ICP-MS) 

5.55 

Soil


2)

World n.a.  n.a 

Total 



Water 



FOREGS 

807 

Filtered <0.45 µm

 

0.004 (µg l

-1

Water


3)

World 


n.a. 

n.a. 


 

0.004 (µg l

-1

) 



Stream sediment 

FOREGS 

848 

<0.15 

Total (XRF) 

8.32 

Floodplain sediment 

FOREGS 

743 

<2.0 

Total (XRF) 

4.51 

Stream sediment

4)

Canada 


26 227 

<0.18 

Total (INAA) 

1)

Rudnick & Gao 2004, 



2)

Koljonen 1992, 

3)

Ivanov 1996, 



4)

Garret 2006.



 

 

 



Hf in soil 

 

The median Hf content is 5.3 mg kg



-1

 in 


subsoil and 5.55 mg kg

-1

 in topsoil, with a range 



from <0.2 to 20.8 mg kg

-1

 in subsoil and up to 



21.2 mg kg

-1

 in topsoil.  The average ratio 



topsoil/subsoil is 1.080. 

Hafnium substitutes for Zr in all its minerals, 

especially in zircon.  This leads logically to a very 

strong correlation; the observed correlation 

coefficient Zr-Hf is 0.97 in subsoils, and 0.96 in 

topsoils.  Further, the Hf distribution maps are 

almost identical to the corresponding Zr maps. 

Low Hf values in subsoil (<3.79 mg kg

-1



occur in central Finland, in small parts of south 



Poland and north-east Germany, in central 

Hungary, and in mainly calcareous regions of 

north-eastern and south-eastern France, southern 

Spain, northern Italy and Greece. 

The subsoil Hf map shows high values (>7.06 

mg kg


-1

) in south-western Norway and Sweden, 

and in north-central Sweden, all related to 

crystalline rocks, where zircon is normally 

abundant.  A large zone with high Hf values 

extending from southern England over north-

western France into central Germany is related to 

(a) Quaternary loess deposits rich in weathering-

resistant heavy minerals, (b) palaeofluviatile 

deposits (palaeoplacers) and (c) palaeoshorelines 

of the Ypresian sea (Lower Eocene) (Salpeteur et 

al. 2005).  Further, anomalies occur in the 

Bohemian Massif, Hungary, Slovenia and most of 

Croatia (in residual soils on karstified carbonate 

rocks, palaeofluviatile deposits and loess), and the 

Roman Alkaline Province.  In Spain, point 

anomalies occur in the central Iberian Massif 

(Pedroches batholith), Asturias and Galicia 

(intermediate intrusive rocks of the Iberian 

Massif).  Two isolated anomalous points appear in 

south-east-Poland, possibly related to Quaternary 

loess.   

The topsoil Hf map is very similar, but 

elevated values are also present in Lithuania and 

Estonia, where it is presumed to be agrogenic in 

origin; formerly imported phosphate fertilisers 

from the Kola peninsula were rich in zircon (Hf-

carrier) and, thus, contribute to higher topsoil Hf 

values in agricultural soil.  Hf is also higher in 

topsoil in the eastern Pyrenees. 

Hafnium has a very strong correlation with Zr 

both in subsoil (0.97) and topsoil (0.96).  In 

subsoils, Hf also has a good correlation (>0.4) 

with most REEs, Y, Nb, Ta and Ti, a weak 

correlation (>0.3) with Eu, Th, Ag and Ba, and a 

good negative correlation with CaO (-0.40).  In 

topsoil, Hf has a weak to good correlation with the 

REEs, a good correlation with Nb, a weak 

correlation with Y, Ta, Ag and Ti, and a weak 

negative correlation with CaO.    

 

 



 

188



Hf in stream water  

 

Hafnium values in stream water range over 



hardly  two  orders  of  magnitude, from <0.002 

µg l


-1

 to 0.072 

µg l

-1

 (excluding an outlier of 0.12 



µg l

-1

), with a median value of 0.004 



µg l

-1

.  About 



25% of the data are less than the analytical limit 

of quantification (0.002 

µg l

-1

).   



Lowest  Hf  values  in  stream water (<0.002 

µg l


-1

) are predominantly found in most of Spain, 

in northern Portugal, in most of France, northern 

Italy, Switzerland and Austria, in south-western 

Germany, in western Scotland, in south-western 

and northern Norway, in southern Poland and 

eastern Slovakia, east Croatia and in most of 

Greece.  Highest Hf concentrations (>0.02 

µg l

-1



are found in central and southern Sweden, in 

central and southern Finland, and in southern Italy 

(Sicily).   

Enhanced values in stream water (between 

0.01 and 0.02 

µg l


-1

) also occur in southern 

Norway, most of Sweden and Finland, in Latvia, 

Lithuania (partly agrogenic as a result of 

application of zircon-rich fertilisers imported from 

the Kola peninsula) and northern Poland.  In 

Poland as well as in other Baltic Sea countries and 

in southern Fennoscandia, high Hf concentrations 

are correlated with DOC (dissolved organic 

substances), which shows a regional relationship 

with peat lands.  Isolated enhanced values occur 

in northern Germany, in France (Brittany and 

Lorraine) and in central-southern Italy.  The latter 

values occurring in Italy are certainly controlled 

by recent alkaline volcanism of the Roman and 

Neapolitan  geochemical provinces; the ones in 

Sicily may also be related to volcanic beds that 

occur interlayered with sedimentary evaporitic 

rocks.  Hafnium data correlate, in many respects, 

with Nb and Zr, especially in areas of relatively 

high concentration. 

The described Hf distribution in stream water 

shows clearly the similarity with the REEs and 

associated elements patterns in acidic, low-

mineralisation and high-organic-matter waters.  

The aqueous species are Hf(OH)

2

2+

 and organic 



complexes. The other association, with the pattern 

type of Alkaline rock elements, appears to be 

responsible for high Hf concentrations in Italy 

including Sicily and Sardinia, in Albania, Poland, 

Lithuania  and Latvia.  In comparison with high 

Hf in solid sample media the concentrations in 

stream water differ very much, except in southern 

Sweden, Lithuania and in the Italian province with 

alkaline volcanism. 

 

 



Hf in stream sediment 

 

The median Hf content in stream sediment is 



8.11 mg kg

-1

,  with  a  range  from  0.12  to 174 



mg kg

-1

.  Hafnium substitutes for Zr in all its 



minerals, especially in zircon.  This leads 

logically to a strong correlation; the observed 

correlation coefficient Zr-Hf is 0.84.  Stream 

sediment contains on average more Hf than soil, 

because the heavy mineral zircon is concentrated 

in active stream sediment. 

The Hf distribution map for stream sediment 

shows low values (<4.68 mg kg

-1

) in eastern and 



southern Finland, north-eastern Spain, most of 

northern and central Italy, central Austria, coastal 

Croatia, and throughout Greece including Crete. 

High  Hf  values  in stream sediment (>14.1 

mg kg

-1

) are found throughout the Massif Central 



in France, south-central Spain (peraluminous 

epizonal granite in Extremadura, and Pedroches 

batholith near Córdoba), southern France 

(including the Aquitaine Basin), northern France 

(Eocene detrital sediments), eastern Scotland 

(Caledonian granite, schist, gneiss), south-western 

Norway, south-western and parts of northern 

Sweden, north-east Germany and central Poland 

(glaciofluvial detrital zircon), Estonia and 

adjacent Latvia.  Point anomalies appear in the 

Poitou region in France, and in the south-eastern 

Netherlands.  In the southern Massif Central, high 

Hf values obviously correlate with Zr, La, Ce, Y, 

Sn and Be anomalies inherited from late tectonic 

leucogranite intrusions. 

Hafnium in stream sediment shows a very 

strong correlation with Zr (0.84), a strong 

correlation with Lu and Yb, a good correlation 

with most of the REEs, Y and Si, and a weak 

correlation (between 0.3 and 0.4) with Eu, Nb and 

Th.  It has a weak negative correlation with CaO 

(-0.31). 

 

189



Hf in floodplain sediment 

 

The total Hf concentrations in floodplain 



sediment vary from <0.05 to 22.0 mg kg

-1

, with a 



median of 4.51 mg kg

-1

).   



Low total Hf values in floodplain sediment 

(<2.86 mg kg

-1

) occur over the carbonate, clastic 



and mafic-ultramafic rocks of Albania and 

Greece; carbonate and clastic terrain of Ebro 

River basin, crystalline rocks of the Iberian 

Meseta Central, carbonate rocks of eastern Spain 

and crystalline rocks of Galicia in Spain; 

crystalline rocks of Brittany and Poitou to the 

alluvial sediments of the lower Garonne river, the 

calcareous regions of Rhône-Saône river and Paris 

basins in France; the carbonates and crystalline 

rocks of the Western Alps, southern Italy, and the 

Dalmatian part of Croatia, the molasse basin of 

western and central Austria, sandstone of the 

English Midlands, and the glacial drift covered 

region of Poland. 

It is noted that high Hf patterns in floodplain 

sediment cross established geological boundaries, 

as is the case in Norway, and a good explanation 

cannot be offered.  However, some of the high Hf 

values are related to specific lithologies or known 

mineralisation.  High  total  Hf  values   (>6.51  

mg kg

-1

) are found in most of Norway over 



variable lithology and mineralisation (e.g., Søve 

Nb-REE-Th to the south-west of Oslo), central 

and north Sweden, the glacial drift covered Baltic 

countries with fluvio-glacial zircon, but also due 

to fertilisers, part of Massif Central, Aquitaine 

Basin and northern France, west-central Spain 

(Palaeozoic detrital rocks of the Iberian Massif, 

and Tertiary basin of Old Castilla, with sediments 

derived from granitic intrusions); the Roman 

Alkaline Province in Italy; a wide belt extending 

from the Ardennes to the Harz Mountains, 

Erzgebirge, Bohemian Forest and Moravian 

Mountains in the Czech Republic, which may be 

due, as in soil,  to Quaternary loess deposits rich 

in weathered-resistant heavy minerals; in eastern 

Slovakia and eastern Hungary (felsic intrusives). 

The highest Hf values in floodplain sediment 

occur in Germany (22.0 mg kg

-1

), related to the 



glacial drift deposits probably derived from 

Norway, in France (17.1 mg kg

-1

) over Tertiary 



clastics, and two values in southern (16.7 mg kg

-1



and northern Norway (16.7 mg kg

-1

).   



It is interesting to note that in most of Europe 

the Hf and Zr in floodplain sediment show a 

coherent pattern, except in Scandinavia where 

there is an antipathetic relationship.  Norway has 

higher Hf values, and Sweden higher Zr values.  

In Norway the high Hf values show a remarkable 

similarity with the heavy REE patterns, 

suggesting a high Hf content in REE minerals, 

such as monazite. 

Hafnium in floodplain sediment shows a strong 

correlation (>0.6) with Zr, Tb, Dy, Ho, Er, Tm, 

Yb and Lu (heavy REEs), a good correlation 

(>0.4) with La, Ce, Pr, Nd and Sm (light REEs), 

Eu, Gd, Y, Ta, and a weak, but significant, 

correlation (>0.3) with Tl, Ti, Nb and K

2

O.  It has 



a weak negative correlation with CaO (-0.38). 

It is concluded that the distribution map of 

total Hf in floodplain sediment shows the 

geochemical differences of the geological 

substratum and mineralised areas quite well, and 

no distinguishable influences from anthropogenic 

activities are recognised, except possible 

contamination in the Baltic states by Zr-rich 

fertilisers. 

 

 



Hf comparison between sample media 

 

Patterns in Hf distribution between topsoil and 



subsoil are very similar, but there are significant 

differences between the distribution patterns in 

soil and sediment.  Stream sediment are generally 

higher in Hf, because zircon (which contains most 

of the Hf) is concentrated in the heavy mineral 

fraction in active stream sediment.  Stream 

sediment is relatively higher in Hf in an area 

extending from Denmark over north and eastern 

Germany to southern Poland compared to 

floodplain sediment and soil; the same pattern is 

observed over the Central Massif and in Estonia.  

However, Hf is relatively low in stream sediments 

in an area extending from northern France to 

central Germany, as well as the alkaline magmatic 

province of Italy, and in Croatia and Slovenia.  

Floodplain and stream sediment in Norway are 

generally higher in Hf than in soil, which is in 

contrast to the behaviour of Zr (no explanation). 

A boxplot comparing Hf variation in subsoil, 

topsoil, stream sediment and floodplain sediment 

is presented in Figure 20. 

 

190




Patterns in stream water Hf data are different 

from distributions in the solid sample media, 

especially throughout northern Europe. 

 

Distributions are controlled strongly by DOC, 



since Hf is highly insoluble unless complexed 

with organic materials.  Highest concentrations 

are, therefore, associated with the organic rich 

environments of most of southern and central 

Fennoscandia, as well as in Lithuania and Latvia.  

Patterns in Hf distribution throughout most of 

southern Europe, especially around the 

Mediterranean area, are similar in stream water 

and solid sample media, with the exception of 

Sardinia, Sicily and Albania. 

 

 

Figure 20. Boxplot comparison of Hf variation in subsoil, topsoil, stream 



sediment and floodplain sediment.

 

 



191

Yüklə 73,94 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə