Issn: 1223-6934 Applications of fractals in medicine



Yüklə 0,57 Mb.
Pdf görüntüsü
tarix12.04.2023
ölçüsü0,57 Mb.
#105148
fractal medicine



Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 42(1), 2015, Pages 167–174
ISSN: 1223-6934
Applications of fractals in medicine
Kaoutar Lamrini Uahabi and Mohamed Atounti
Abstract.
The mathematical concept of fractals characterized irregular and broken objects,
with details on all scales of observation and whose dimension can be non-integer. A fractal
organization controls the structures at all levels of the human body. Euclidean geometry is
powerless to study irregularities in these structures. For cons, the fractal analysis tools allow
us to model it with an impressive realism. We discuss in this work the contribution of fractals
in the diagnostic of the diabetic retinopathy, by a non-invasive method. We will take two
samples of each ten retinal images, one is normal and the other is pathological.
We will
calculate the fractal dimensions for each sample. The comparison of the values obtained for
the two samples have led to a significant result, allowing distinguish between normal retinas
of pathological retinas.
2010 Mathematics Subject Classification.
Primary 28A80; Secondary 92B05.
Key words and phrases.
Fractals, fractal dimension, modeling, retina, retinal image, blood
vessel, diabetic retinopathy.
1. Introduction
The human body is full of a multitude of very complex structures, this is the case
of the respiratory tract and the prodigious bronchial ramification, some parts of the
heart, the renal system, the large blood and capillary networks, etc ... These struc-
tures, real physical systems are of geometric and functional complexities. A precise
approach of these phenomena necessarily passes through a stage of mathematical
modeling. Euclidean Geometry is unfortunately powerless to resolve such problems.
It actually applies only in the cases of smooth and regular shapes. Thus, a point has a
dimension equal to zero, a line has a dimension one, a plane has a dimension two and
a volume has a dimension equal to three. Fractal geometry, meanwhile, deals with
such dimensions ranging for example between one and two or between two and three,
etc. The fractal dimension is in fact the size of the irregular curves [7]. And it’s this
specificity that offers huge benefits in the field of medicine. Indeed, the structures
of the human body are real fractal objects, which allows a modeling and hence a
quantification of these phenomena, through the fractal analysis [3]. The science of
fractal objects uses specific mathematical objects of non-Euclidean geometry. The
term ”fractal” is used to refer to self-similar objects and having the same details in
different scales. The fractal dimension is a measure of the density of the fractal in
the space it occupies [21]. A fractal is a localized object in space that can be de-
composed into a growing number of similar or identical elements ever smaller. This
is a self-similar object, meaning that its smallest elements are copies of his greatest
elements. In the case of some fractals, the smallest elements of the structure are exact
copies of larger elements. For most of fractals found in nature, smaller elements are
similar, not identical, to the larger elements. The tree is an example of fractal; it has
This paper has been presented at Congr`
es MOCASIM, Marrakech, 19-22 November 2014.
167


168
K. LAMRINI UAHABI AND M. ATOUNTI
a growing number of branches but still smaller. A fractal can also be an established
process at a particular position in time, and has a growing number of increasingly
low amplitude fluctuations. A fractal can also be a set of numbers from experimental
data, with a growing number of ever smaller numbers. This system has a surprising
property; it predicts the system values accurately for short periods of time, but do
not allow for the same forecasts over long periods of time [15].
In this work, we will stick to one of the important applications of fractals in the
medical field, namely diabetic retinopathy; very common complication of diabetes
disease. It causes changes in the morphological structure of blood vessels in the dis-
eased retina. Although they represent only 5% of body volume, blood vessel diameter
nourish every cell of the human body. As they occupy an infinite surface contained
in a finite volume, the capillary and blood vessel diameter have very complex prop-
erties [6]. For this, various vascular exploration techniques do not allow an objective
quantification of the architecture of vessel diameter, although this factor is of major
importance to distinguish between what is physiological and what is pathological [16].
The retina is the only location where blood vessels can be directly visualized in vivo,
by a non-invasive method [17]. The blood vessels in the retina branch a number of
times each time forming a vessel tree that is similar in characteristics to the branch
it came from. There are some reports of measuring fractal properties of blood vessel
patterns of the retina; most have involved manual segmentation of the blood vessel
patterns [4], [22] and [23]. Now with reliable automated vessel segmentation, attention
is turning to analyzing the retinal vasculature as a fractal [1], [6].
In the present paper, we will discuss in the two first sections, the contribution of
fractals in the diabetic retinopathy, using the fractal dimension, which is the main
tool of fractal analysis. In section 3, we will define the pathology of the diabetic
retinopathy and compare the classical method of diagnosis of the disease and the new
method based on fractal geometry, which is a non-invasive method. In section 4, we
will take two samples of twenty retinal images, one of them is composed by ten normal
retinas and the other by ten pathological retinas. We will estimate the box counting
dimension, as fractal dimension for each sample. For this, we use the Image J fractal
analysis software. Thereafter, we will try to compare the values obtained for the two
samples and we will discuss the results.
2. Fractal dimension
Box-counting or box dimension is one of the most widely used fractal dimensions.
Its popularity is largely due to its relative ease of mathematical calculation and em-
pirical estimation. Let
F
be any non empty bounded subset of
R
n
. The lower and
upper box-counting dimensions of a subset
F

R
n
are respectively defined by [7],
[11], [12], [19]:
dim
B
(
F
) = lim
δ

0
logN
δ
(
F
)

logδ
;
dim
B
(
F
) = lim
δ

0
logN
δ
(
F
)

logδ
(1)
If these are equal then the common value is referred to as the box-counting dimension
of F and is denoted by [7], [11], [12], [19]:
dim
B
(
F
) = lim
δ

0
logN
δ
(
F
)

logδ
(2)
If this limit exists, where
N
δ
(
F
) is any of the following:
(i) the smallest number of closed balls of radius
δ >
0 that cover
F
;


APPLICATIONS OF FRACTALS IN MEDICINE
169
(ii) the smallest number of cubes of side
δ
that cover
F
;
(iii) the number of
δ

mesh
cubes that intersect
F
;
(iv) the smallest number of sets of diameter at most
δ
that cover
F
;
(v) the largest number of disjoint balls of radius
δ
with centers in
F
.
3. Fractals and diabetic retinopathy
In the field of ophthalmic pathologies, diabetic retinopathy has one of the most
common complications of diabetes disease. Figure 1 shows a diseased retina.
Figure 1.
Diabetic retinopathy.
Diabetic retinopathy is damage to the blood vessels of the retina in people with
diabetes. This condition develops silently and in a sneaky way for many years. Only
a regular screening test would diagnose such interference in its infancy. Note that
diabetic retinopathy is a leading cause of blindness in people with diabetes. This
disease affects up to 80 percent of all patients with diabetes for 10 years or more [24].
Despite these intimidating statistics, research indicates that at least ninety percent of
these cases could have been reduced if they had received adequate treatment on time
[9]. This shows the great importance that has the early diagnosis of such condition.
The usual and classical technique for screening for diabetic retinopathy is based on
the examination of the fundus of the eye, performed by an ophthalmologist after
pupil dilation. This type of examination is easily understood that varies according
to the judgment of the treating doctor, and that a large part of subjectivity persists,
especially in cases of early attacks.
In recent decades, new methods of screening for diabetic retinopathy have been
tried.
The method of making photographs of the fundus without pupil dilation,
using a digital camera is the most relevant. It is a non-invasive method and can
be performed by a technician within a short time [2]. It allows us to take digital
photographs, which are transmitted to a central database for testing. To process these
data (retinal images), several methods have been tried and reported in the literature.
But it seems that the methods using fractal analysis are the most consistent and the
most likely to give very accurate results (Figure 2). The fractal dimension is the main
tool of fractal analysis [5]. This is one of the parameters used to characterize the
complexity of blood networks. Based on the estimation of the fractal dimension [20],


170
K. LAMRINI UAHABI AND M. ATOUNTI
Figure 2.
Diagnosis of diabetic retinopathy: the enormous interest of
the method using fractals.
using different algorithms or different methods, several studies on the mechanism of
formation of the vascular network of the retina have provided impressive results and
therefore have given rise to new and very important interpretations.
4. Results and discussions
In the present work, we specifically used the box-counting dimension as fractal
dimension. We took a number of images of the retina from the base STARE database
(http://www.ces.clemson.edu/ ahoover/stare/). The first sample, denoted sample A,
consists of ten images of normal retinas; the second, denoted sample B contains ten
images of pathological retinas [18]. The evaluation of the calculated results is made
by comparing the values obtained for the two samples. For each group, a fractal di-
mension calculation was performed. We note by D the value of this fractal dimension.
It is calculated by the method ImageJ. This method can display, edit, analyze, pro-
cess, save and print 8-bit, 16-bit and 32-bit images. It can read many image formats
including TIFF, GIF, JPEG, BMP, DICOM, FITS and ”raw”. It supports ”stacks”,
a series of images that share a single window. It is multithreaded, so time-consuming
operations such as image file reading can be performed in parallel with other opera-
tions. (http://imagej.nih.gov/ij/).
It can calculate area and pixel value statistics of user-defined selections. It can mea-
sure distances and angles. It can create density histograms and line profile plots. It
supports standard image processing functions such as contrast manipulation, sharp-
ening, smoothing, edge detection and median filtering. (http://imagej.nih.gov/ij/).
In Table 1, the results of calculations of fractal dimensions are grouped for the
sample A of normal cases (images of healthy retinas).


APPLICATIONS OF FRACTALS IN MEDICINE
171
number of image
Retinal image
D
1
im0077.ah
1.578
2
im0081.ah
1.554
3
im0082.ah
1.578
4
im0162.ah
1.651
5
im0163.ah
1.641
6
im0235.ah
1.598
7
im0236.ah
1.585
8
im0239.ah
1.588
9
im0240.ah
1.594
10
im0255.ah
1.634
Table 1. The values of fractal dimensions D for the sample A.
The shapes of the distributions of the blood vessels of human retinas are very
complex and very different from one person to another, even in the case of normal
retinas. This greatly complicates the comparison of the distributions of these net-
works. The complexity is even greater when treating pathological retinas. For this,
the fractal geometry may characterize more precisely these irregular shapes. Figure
3, extracted from STARE database( http://www.ces.clemson.edu/ ahoover/stare/),
shows the fractal shape of the distribution of blood vessels of a normal retina.
Figure 3.
Image of a normal retinal vessel network (file im0163.ah).
For a sample A, the graph in blue of Figure 4 represents the fractal dimension
associated with each normal case of human retina. This curve shows a more or less
linear appearance. The values of fractal dimensions are roughly the same for the ten
cases studied.
number of image
Retinal image
D
1
im0001.ah
1.539
2
im0002.ah
1.549
3
im0003.ah
1.508
4
im0004.ah
1.522
5
im0005.ah
1.590
6
im0044.ah
1.540
7
im0139.ah
1.565
8
im0291.ah
1.519
9
im0319.ah
1.444
10
im0324.ah
1.567
Table 2. The values of fractal dimensions D for the sample B.
In Table 2, there are the results of calculations of the fractal dimensions for the sam-
ple B containing pathological cases (images of diseased retinas). Figure 5, obtained
from STARE database (http://www.ces.clemson.edu/ ahoover/stare/), highlights the


172
K. LAMRINI UAHABI AND M. ATOUNTI
Figure 4.
Graph linking the values of fractal dimension associated
with the images of sample A (normal retinas).
broken and fractured appearance of the structure of blood vessels of a pathological
retina.
Figure 5.
Image of a pathological retinal vessel network (file im0003.ah).
In the case of the sample B, Figure 6 shows the graph (shown in red) representing
the fractal dimension for each pathological case. One can easily notice the broken
shape of this curve. This shows the variation of the fractal dimension of a pathological
subject compared to another. This variation is due to different degrees of impairment
of the blood vessels of the retina in question.
The clinical indication of changes
in fractal dimensions (Figure 6) is very important because it allows a very precise
classification of stages of deterioration of the retinas.
Figure 7 (comparative figure) shows the comparison of the results for both samples
A and B. It is clearly seen that the fractal dimension for sample B (pathological
retinas) is significantly lower than that of sample A (normal retinas).
From a statistical point of view, the increasing of the numbers of cases in each
sample could give conclusive results. This can be very useful in the quest of automatic
procedures of diagnostic.
Conclusions.
The human retina has a complex vascular network, having a fractal
structure. For this, the fractal geometry, in contrast to Euclidean geometry, provides
a more accurate method of modeling of this vascular network. Two samples of each
ten retinal images, one is normal and the other is pathological, were studied. The
comparison of the values obtained for the two samples have led to a significant result,
allowing differentiate normal retinas of pathological retinas. An increase in numbers
of cases studied could enrich these results. Such results are of major importance for


APPLICATIONS OF FRACTALS IN MEDICINE
173
Figure 6.
Graph linking the values of fractal dimension associated
with the images of sample B (pathological retinas).
Figure 7.
Comparison of curves of fractal dimensions of sample A and
sample B.
the diagnosis of diabetic retinopathy in general and for early diagnosis in particular,
where the method took its rise. Fractal analysis of vasculature formed in human
retinal image can be used as a non-invasive technique for detection of early retinal
vascular diseases. Indeed, it would be very useful to arrive eventually to determine a
reference value which would be a true indicator between normal cases and pathological
cases. On the other hand, such a value would give a very precise indication of the
degree of achievement and the stage of the disease. These measures will also be useful
for the control of the severity of the disease and the evaluation of the progress of
treatment over time.


174
K. LAMRINI UAHABI AND M. ATOUNTI
References
[1] N. Akhter, Y. Rajput et al., Fractals for Complexity Analysis of Diabetic Retinopathy in Retinal
Vasculature Images,
International Journal of Research in Engineering and Technology
3
(2014),
no. 3, 680–685.
[2] J. P. Aubert, P. Massin et al., D´
epistage de la r´
etinopathie diab´
etique par des photographies
du fond d’oeil. ´
Evaluation d’un programme en mdecine lib´
erale (´
etude DODIA),
La Revue de
Praticien - M´
edecine G´
en´
erale
19
(2005), no. 692/693, 588–592.
[3] M. F. Barnsley,
Fractals everywhere
, Academic Press, Inc, San Diego, USA, 1988.
[4] S.C. Cheng and Y.M. Huang, A novel approach to diagnose diabetes based on the fractal
characteristics of retinal images,
IEEE Trans. Inf. Technol. Biomed.
7
(2003), no. 3, 163–170.
[5] G. Cherbit,
Fractals: Dimensions non enti`
eres et applications
, Masson, Paris, 1991.
[6] G. Dougherty (ed.),
Medical Image Processing: Techniques and Applications
, Biological and
Medical Physics, Biomedical Engineering, Springer Science and Business Media, LLC 2011.
[7] K. J. Falconer,
Fractal geometry: Mathematical foundations and applications
, John Wiley &
Sons. London, 1990.
[8] L. Goldberger, Non-linear dynamics for clinicians: chaos theory, fractals and complexity at the
bed side,
Lancet.
346
(1996), 1312–1314.
[9] P.J. Kertes, T.M. Johnson (eds.),
Evidence Based Eye Care. Philadelphia
, PA: Lippincott
Williams and Wilkins, 2007.
[10] S. Kyriacos,

eseaux vasculaires: Analyse fractale et mod´
elisation de la croissance
, Th`
ese de
Doctorat en Sciences Pharmaceutiques, Facult´
e de Pharmacie, Universit´
e de Montral, Canada,
1997.
[11] K. Lamrini Uahabi, Fractal dimension of the family of trinomial arcs M(p,k,r,n),
International
Mathematical Forum
3
(2008), no. 6, 291–298.
[12] K. Lamrini Uahabi, The fractal dimension of the family of trinomial arcs G(p,k,r,n),
Interna-
tional Journal of Contemporary Mathematical Sciences
3
(2008), no. 6, 285-292.
[13] K. Lamrini Uahabi et M. Zaoui, R´
esolution des ´
equations trinomiales,
Ann. Sci. Math. Qu´
ebec
28
(2004), no. 1-2, 189–197.
[14] P. M. Lannaccone and M. Khokha,
Fractal geometry in biological systems - An analytical ap-
proach
, CRC Press. Inc., 1996.
[15] L.S. Liebovitch,
Fractals and Chaos Simplified for the Life Sciences
, Oxford University Press,
New York, 1998.
[16] D. Mancardi, G. Varetto, E. Bucci, F. Maniero and C. Guiot, Fractal parameters and vascular
networks: facts & artifacts,
Theor. Biol. Med. Model.
5
(2008), no. 12.
[17] Niall Patton at. el., Retinal image analysis: Concepts, applications and potential,
Progress in
Retinal and Eye Research
25
(2006), 99–127.
[18] T. Stosic and B.D. Stosic, Multifractal Analysis of Human Retinal Vessels,
IEEE Transactions
on Medical Imaging
Volume
25
(2006), no. 8, 1101–1107.
[19] S. Talu and S. Giovanzana, Image analysis of the normal human retinal vasculature using fractal
geometry,
Human and Veterinary Medicine, International Journal of the Bioflux Society
4
(2012), no. 1, 14–18.
[20] C. Tricot,
Courbes et dimension fractale
, Springer, Editions Sciences et Culture, Paris, 1993.
[21] M.L. Valarmathi and K. Anbumani,
Non Iterative Fast Fractal Codec Using Local Fractal
Dimension,
GVIP J.
6
(2006), no. 3.
[22] N. Cheung et al, Quantitative Assessment of Early Diabetic Retinopathy Using Fractal Analysis,
Diabetes Care
32
(2009), 106–110.
[23] B.R. Masters, Fractal analysis of the vascular tree in the human retina,
Annu. Rev. Biomed.
Eng.
6
(2004), 427–452.
[24]
Diabetic
retinopathy.
Mayo
Clinic.
http://www.mayoclinic.org/diseases-
conditions/diabeticretinopathy/basics/definition/con-20023311
(Kaoutar Lamrini Uahabi, Mohamed Atounti)
Laboratory of Applied Mathematics and
Information Systems, Department of Mathematics and Computer Science,
Multidisciplinary Faculty of Nador, University Mohammed First of Morocco, 62702
Selouane - Nador, Morocco
E-mail address
:
lamrinika@yahoo.fr, atounti@hotmail.fr

Yüklə 0,57 Mb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə