Landscape Soilscape Evolution Modelling: lapsus



Yüklə 49,89 Kb.
Pdf görüntüsü
tarix26.09.2017
ölçüsü49,89 Kb.
#2041


© 2010 19

th

 World Congress of Soil Science, Soil Solutions for a Changing World 



1 – 6 August 2010, Brisbane, Australia.  Published on DVD. 

12 


Landscape - Soilscape Evolution Modelling: LAPSUS 

 

M.P.W. Sonneveld



A

, A.J.A.M. Temme

A

, J.M. Schoorl



A

, L. Claessens

A,B

, W. Viveen



A

, J.E.M. Baartman

A

, J.P. 


Lesschen

C

 and W. van Gorp



A

 

 



Wageningen University, Land Dynamics Group, P.O. Box 47, 6700 AA Wageningen, The Netherlands. Emails 

Marthijn.Sonneveld@wur.nl, Arnaud.Temme@wur.nl, Jeroen.Schoorl@wur.nl, Jantiene.Baartman@wur.nl, 

Wouter.vanGorp@wur.nl 

B

 International Potato Center (CIP), Nairobi, Kenya. Email l.claessens@CGIAR.ORG 



C

Alterra, Wageningen UR, Wageningen, The Netherlands. Email JanPeter.Lesschen@wur.nl 

 

 

Abstract 

Landscape evolution modelling can make landscape evolution hypotheses explicit and theoretically allows 

for their falsification and improvement. Ideally, landscape evolution models (LEMs) combine the results of 

all relevant landscape forming processes into an ever-adapting digital landscape (e.g. DEM). These processes 

may act on different spatial and temporal scales. LAPSUS is an example of such a LEM. In multiple study 

cases different landscape processes have been included in LAPSUS: water erosion and deposition, landslide 

activity, creep, solifluction, weathering, tectonics and tillage. Besides properties of soils influencing 

landscape forming processes, vegetation effects can also be included. Process descriptions are kept as simple 

and generic as possible, ensuring wide applicability of the modelling approach. Interactions between 

processes are turn-based: soil redistribution caused by one process are calculated and used to adapt the DEM 

before another process is simulated. LAPSUS uses multiple flow techniques to model flows of water and 

sediment over the landscape. Though computationally costly, this gives a more realistic result than steepest 

descent methods. In addition, the combination of different processes may create sinks during modelling. 

Since these sinks are not spurious, the model has been adapted to deal with sinks in natural ways. This is 

crucial for several purposes, for instance when studying damming of valleys by landslides, and subsequent 

infilling of the resulting lake with sediments from upstream. 

 

Key Words 

Landscape Evolution Modelling, LAPSUS, soil redistribution, erosion. 

 

Introduction 

This short paper summarizes ongoing and completed work with the LAPSUS model and foreseen 

developments in the near future. LAPSUS is a landscape evolution model (LEM) that combines the effects of 

multiple landscape forming processes, including soil formation, into one dynamic landscape modelling 

framework. Spatial and temporal extent and resolution may vary from slope, catchment to basin, processed 

grid cells from 1 to 1000 m

2

, timesteps of multiple events, seasons, years, decades and simulation periods 



from years to millennial time scales. 

 Interactions between processes are turn-based: soil redistribution caused by one process are calculated and 

used to adapt the DEM before another process is simulated. In multiple study cases different landscape 

processes have been included in LAPSUS : water erosion and deposition, landslide activity, creep, 

solifluction, weathering, tectonics and tillage. (Figure 1). 

 

 



 

Figure 1.  Overview of processes incorporated in the LAPSUS modelling framework (see also 

www.lapsusmodel.nl). 


© 2010 19

th

 World Congress of Soil Science, Soil Solutions for a Changing World 



1 – 6 August 2010, Brisbane, Australia.  Published on DVD. 

13 


Besides properties of soils influencing landscape forming processes, vegetation effects can also be included. 

Process descriptions are kept as simple and generic as possible, ensuring wide applicability of the modelling 

approach. LAPSUS uses multiple flow routing techniques to model the flow of water and sediment over the 

landscape. This is computationally costly, but yields a more realistic result than steepest descent methods, 

especially when combining multiple processes over multiple timesteps. 

 

The combination of different processes may create sinks during modelling. Since these sinks are not 



spurious, the model has been adapted to deal with them in a natural way. This is crucial when studying 

damming of valleys by landslides, and subsequent infilling of the resulting lake with sediments from 

upstream. 

 

Results and discussion 

LAPSUS has been used for erosion and landscape evolution studies in many landscapes in many countries 

over the last years. The development of LAPSUS started in 2000 with the programming, calibration and 

validation of the LAPSUS model and applications concerning land use in Spain and Ecuador (Schoorl et al

2000, 2002, 2004, 2006; Schoorl and Veldkamp 2001, 2006). Later, the model has been extended in order to 

include soil redistribution by landsliding in New Zealand and Taiwan (Claessens et al. 2005, 2006a, 2006b, 

2007a, 2007b). In addition, issues of DEM resolution and the treatment of sinks and pits in the landscape 

have been investigated (Temme et al. 2006, 2009a) as well as stretching the models time scale to landscape 

evolution time spans, for example in South Africa (Temme and Veldkamp 2009; Temme et al. 2009b). 

Different applications with individual processes have been developed, for example, the model has been used 

in regional nutrient balance studies in Africa (Haileslassie et al. 2005, 2006, 2007; Roy et al. 2004; Lesschen 



et al. 2005). The model has also been applied in desert environments in Israel (Buis and Veldkamp 2008);it 

has been used in combination with geostatistical tools and tillage in Canada (Heuvelink et al. 2006), and to 

investigate the faith of phosphor in the landscapes of the Netherlands (Sonneveld et al. 2006).  

Recent developments and directions with the LAPSUS model are: 

•  Connectivity, agricultural terraces and land abandonment (Lesschen et al. 2007, 2009). 

•  Interactions and feedback mechanisms between land use and soil redistribution (Claessens et al. 2009). 

•  Effects of hydrological engineering on soil redistribution in large fluvial systems (Viveen et al. 2009) 

•  Erosion in a landscape evolution context, comparing event based and long term based models: LISEM 

and LAPSUS (Baartman et al. 2009). 

•  Refining the LAPSUS temporal resolution. Modelling daily sediment yield from a meso-scale 

catchment, a case study in SW Poland. (Coevert-Keesstra et al. 2009) 

•  Land sliding in mountainous areas. Landscape Dynamics: Calibrating landscape process modelling with 

Caesium-137 data, separating water driven erosion from landslides? See (Schoorl et al. 2009). 

•  3D river gradient modelling. Quaternary tectonics, sea level and climate change: the case of the river 

Miño (Viveen et al. 2009). 

•  Coupling and interaction with TOA modelling. A novel site-specific methodology to assess the supply 

curve of environmental services (Stoorvogel et al. 2009; Claessens et al. in prep). 

 

Conclusion 

Landscape evolution modelling allows for confirmation, falsification or improvement of landscape evolution 

hypotheses and can make the consequences temporally and spatially explicit. Ideally, landscape evolution 

models (LEMs) combine the results of all relevant landscape forming processes into an ever-adapting digital 

landscape model These processes may act and interact on different spatial and temporal scales. The LAPSUS 

modelling framework is an example of a LEM that has embedded multiple landscape forming processes and 

their interactions in a generic tool that can be used to study many landscapes of the world at multiple 

temporal and spatial scales. 

 

References 

Baartman JEM, Schoorl JM, Veldkamp A, Ritsema CJ (2009) Erosion in a landscape evolution context: 

LISEM and LAPSUS. In: International conference on Desertification, Murcia, Spain, 16 - 18 September, 

2009. - Murcia, Spain : Ediciones de la universidad de Murcia, Advances in studies on desertification, 

2009-09-16/ 2009-09-18 

Buis E, Veldkamp A  (2008) Modelling dynamic water redistribution patterns in arid catchments in the 

Negev Desert of Israel. Earth Surface Processes and Landforms 33, 107-122.  




© 2010 19

th

 World Congress of Soil Science, Soil Solutions for a Changing World 



1 – 6 August 2010, Brisbane, Australia.  Published on DVD. 

14 


Claessens L, Heuvelink GBM, Schoorl JM, Veldkamp A (2005) DEM resolution effects on shallow landslide 

hazard and soil redistribution modelling. Earth Surface Processes and Landforms 30, 461-477.  

Claessens L, Lowe DJ, Hayward BW, Schaap BF, Schoorl JM, Veldkamp A (2006a) Reconstructing high-

magnitude/low-frequency landslide events based on soil redistribution modelling and a Late-Holocene 

sediment record from New Zealand. Geomorphology 74, 29-49. 

Claessens L, Verburg PH, Schoorl JM, Veldkamp A (2006b), Contribution of topographical based landslide 

hazard Modelling to the analysis of the spatial distribution and ecology of Kauri (Agathis australis): 

Landscape Ecology 21, 63-76.  

Claessens L, Schoorl JM, Veldkamp A (2007a) Modelling the location of shallow landslides and their effects 

on landscape dynamics in large watersheds: an application for Northern New Zealand.  Geomorphology 

87(1-2), 16-27.  

Claessens L, Knapen A, Kitutu MG, Poesen J, Deckers JA (2007b) Modelling landslide hazard, soil 

redistribution and sediment yield of landslides on the Ugandan footslopes of Mount Elgon. 

Geomorphology 90, 23-35.  

Claessens L, JM Schoorl, Verburg PH, Geraedts L, Veldkamp A (2009) Modelling interactions and feedback 

mechanisms between land use change and landscape processes. Agriculture, Ecosystems and Environment 

129, 157-170.  

Claessens L, Stoorvogel JJ, Antle JM, (in prep). Exploring the Impacts of Field Interactions on an Integrated 

Assessment of Terraced Crop Systems in the Peruvian Andes. Submitted to Journal of Land Use Science

Coevert-Keesstra SD, Schoorl JM, Temme AJAM (2009) Modelling daily sediment yield from a meso-scale 

catchment, a case study in SW Poland. In: International conference on Desertification, Advances in 

studies on desertification, Murcia, Spain, 16-18 September 2009. - Murcia, Spain : Ediciones de la 

universidad de Murcia, Congreso internacional sobre desertificacion en memoria del professor John B. 

Thornes, 2009-09-16/ 2009-09-18 

Haileslassie A, Priess J, Veldkamp E, Teketay D, Lesschen JP (2005) Assessment of soil nutrient depletion 

and its spatial variability on smallholders’ mixed farming systems in Ethiopia using partial versus full 

nutrient balances. Agriculture, Ecosystems and Environment 108, 1–16. 

Haileslassie A, Priess JA, Veldkamp E, Lesschen JP (2006) Smallholders’ soil fertility management in the 

Central Highlands of Ethiopia: implications for nutrient stocks, balances and sustainability of 

agroecosystems. Nutrient Cycling in Agroecosystems 75, 135-146.  

Haileslassie A, Priess JA, Veldkamp E, Lesschen JP (2007) Nutrient flows and balances at the field and farm 

scale: Exploring effects of land-use strategies and access to resources. Agricultural Systems 94 (2), 459-

470.  

Heuvelink GBM, Schoorl JM, Veldkamp A, Pennock DJ (2006) Space-time Kalman filtering of soil 



redistribution. Geoderma 133, 124-137.  

Lesschen JP, Asiamah RD, Gicheru P, Kante S, Stoorvogel JJ, Smaling EMA (2005) Scaling Soil Nutrient 

Balances - Enabling mesoscale approaches for African realities. FAO Fertilizer and Plant Nutrition 

Bulletin 15, FAO, Rome.  

Lesschen JP; Stoorvogel JJ; Smaling EMA, Heuvelink GBM; Veldkamp A (2007) A spatially explicit 

methodology to quantify soil nutrient balances and their uncertainties at the national level Nutrient 



Cycling in Agroecosystems 78, 111 - 131. 

Lesschen JP, Schoorl JM, Cammeraat LH (2009. Modelling runoff and erosion for a semi-arid catchment 

using a multi-scale approach based on hydrological connectivity. Geomorphology 109 (3-4), 174-183. 

Roy RN, Misra RV, Lesschen JP, Smaling EM (2004) ‘Assessment of soil nutrient balances: Approaches 

and Methodologies’. Fertilizer and Plant Nutrition Bulletin 14. (FAO: Rome).  

Schoorl JM, Boix Fayos C, de Meijer RJ, van der Graaf ER, Veldkamp A (2004). The 137Cs technique on 

steep Mediterranean slopes (Part 2): landscape evolution and model calibration.  Catena 57, 35-54.  

Schoorl JM, Veldkamp A, Bouma J (2002) Modelling water and soil redistribution in a dynamic landscape 

context. Soil. Sci. Soc. Am. J. 66, 1610-1619.  

Schoorl JM, Veldkamp A (2001) Linking land use and landscape process modelling: a case study for the 

Alora region (South Spain).  Agric.Ecosyst.Environ 85, 281-292.  

Schoorl JM, Sonneveld MPW, Veldkamp A (2000) Three-dimensional landscape process modelling: the 




© 2010 19

th

 World Congress of Soil Science, Soil Solutions for a Changing World 



1 – 6 August 2010, Brisbane, Australia.  Published on DVD. 

15 


effect of DEM resolution.  Earth Surf.Proc.Landforms 25, 1025-1034. 

Schoorl JM, Claessens L, Lopez Ulloa M, de Koning GHJ, Veldkamp A (2006) Geomorphological Analysis 

and Scenario Modelling in the Noboa – Pajan Area, Manabi Province, Ecuador. Zeitschrift Fur 

Geomorfologie 145, 105 - 118.  

Schoorl JM, Veldkamp A (2006) Multi-Scale Soil-Landscape Process Modeling. In ‘Environmental Soil-

Landscape Modeling: Geographic Information Technologies and Pedometrics’. (Ed S Grunwald) pp. 417 

– 435. (Boca Raton, FL, CRC press: Taylor and Francis Group).  

Schoorl JM, Chang KT, Chiu YJ, Veldkamp A (2009) Landscape Dynamics: Calibrating landscape process 

modelling with Caesium-137 data, separating water driven erosion from landslides? In ‘Proceedings of 

The International Conference in Commemoration of the 10th Anniversary of the 1999 Chi-Chi 

Earthquake. Sessions on Land Dynamics in Mountainous Watersheds: Typhoons, Landslides, and Land 

Use, Taipei, Taiwan, 17-21 September 2009’. 

Sonneveld MPW, Schoorl JM, Veldkamp A (2006) Evaluating The Fate Of Phosphorus In Apparent 

Homogeneous Landscapes Using a High-Resolution DEM. Geoderma 133, 32 - 42.  

Stoorvogel JJ, Temme AJAM, Antle JM, Claessens L, Schoorl JM (2009) A novel site-specific methodology 

to assess the supply curve of environmental services. In ‘Proceedings of the Conference on Integrated 

Assessment of Agriculture and Sustainable Development; Setting the Agenda for Science and Policy 

(AgSAP 2009), Egmond aan Zee, The Netherlands, 10-12 March 2009’.  (Wageningen, The Netherlands: 

2009-03-10/ 2009-03-12) 

Temme AJAM, Schoorl JM, Veldkamp A (2006) Algorithm for dealing with depressions in dynamic 

landscape evolution models. Comp.Geosci 32, 452 - 461.  

Temme AJAM, Veldkamp A (2009) Multi-process Late Quaternary landscape evolution modelling reveals 

lags in climate response over small spatial scales. Earth Surface Processes and Landforms 34, 573-589.  

Temme AJAM, Heuvelink GBM, Schoorl JM, Claessens L (2009a) Chapter 5: Geostatistical simulation and 

error propagation in geomorphometry. In: Geomorphometry: Concepts, Software, Applications. (Eds T 

Hengl, HI Reuter) pp. 121 - 140. (Elsevier) (Developments in Soil Science 33)  

Temme AJAM; Baartman JEM; Schoorl JM (2009b) Can uncertain landscape evolution models discriminate 

between landscape responses to stable and changing future climate? A millennial-scale test. Global and 

Planetary Change 69, 48 - 58. 

Viveen W, Maas GJ, Schoorl JM (2009) Prelimanry investigation of the spatial erosion and sedimentation 

patterns and processes in the catchment of German – Dutch Vecht river: potentials for recovery of natural 

river dynamics. (NL: Een verkenning van ruimtelijke erosie- en sedimentatieprocessen in het 

stroomgebied van de Nederlands-Duitse Vecht; Potenties voor herstel van natuurlijke rivierdynamiek). 

Wageningen, Alterra, Alterra Report 1939. pp 33. 

Temme AJAM, Claessens L, Veldkamp A, Schoorl JM (In prep) Evaluating choices in multi-process 

landscape evolution models. Submitted to Geomorphology

Viveen W, Schoorl JM, Veldkamp A, Vidal Romani JR (2009) Quaternary tectonics, sea level and climate 

change: the case of the river Miño. In: Livro de resumos, VII Reuniao do Quaternário Ibérico: O futuro 

do ambiente da Península Iberica: as liçoes do passado geológico recente, Portugal, Algarve, 5-9 October 

2009. - Faro, Portugal : CIMA, 2009-10-05/ 2009-10-09  



Yüklə 49,89 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə