Lleqcia 12 mravalwevrTa (polinomTa) Teoria moqmedebebi polinomebze, polinomTa gayofadoba, naSTiT gayofis algoriTmi



Yüklə 49,14 Kb.
tarix26.11.2017
ölçüsü49,14 Kb.
#12458

Lleqcia 12

mravalwevrTa (polinomTa) Teoria

  1. moqmedebebi polinomebze, polinomTa gayofadoba, naSTiT gayofis algoriTmi,


  2. polinomTa udidesi saerTo gamyofi, misi povnis evklides algoriTmi, Tanamartivi polinomebi,

  3. dayvanadi da dauyvanadi polinomebi, polinomis daSla mamravlebad, jeradi dauyvanadi mamravlebi. polinomis fesvi, bezus Teorema

4. ricxviT koeficientebiani polinomebi

moqmedebebi polinomebze, polinomTa gayofadoba, naSTiT gayofis algoriTmi,


K veils mimarT n xarisxis f(x) polinoms aqvs Semdegi saxe



f(x)=a0xn+a1xn-1+…+an-1x+an,

sadac a0 , a1, …, an elementebia K velidan.



a0, a1, …, an, elementebs ewodeba f(x) polinomis koeficientebi; a0xn, a1xn-1, …, an-1x, an-s ewodebaT f(x) polinomis wevrebi. Tu a00, maSin a0-s ewodeba polinomis ufrosi koeficienti, a0xn-s _ ufrosi wevri, xolo n0 ricxvs _ f(x) polinomis xarisxi da iwereba

n=deg f(x).

Tu n=0, f(x)=an≠0, maSin f(x) nulxarisxis polinomia. xolo f(x) polinoms ewodeba nulovani polinomi da iwereba f(x)=0, Tu misi yvela koeficienti nulia e. i. nulovani polinomi aris K velis nulovani elementi; nulovan polinoms xarisxi ar aqvs.

polinomTa simravleSi SemoviRoT Sekrebisa da gamravlebis operaciebi Semdegnairad:


vTqvaT mocemulia ori

f(x)=a0xn+a1xn-1+…+an-1x+an=,

da


g(x)=b0xm+b1xm-1+…+bm-1x+bm=,

polinomi.

maTi jamia f(x)+ g(x)= ,

sadac, Tu , maSin , xolo Tu , maSin an , romelic arsebobs (anu f(x)+ g(x)-is -is koeficienti aris f(x)-is -is koeficientis -isa da g(x)-is -is koeficientis -is jami).


xolo am polinomebis namravli

f(x) g(x)= ,

sadac (j=0, 1, 2, …, ).

kerZod,

d0=a0b0, d1= a0b1+a1b0,, d2= a0b2+a1b1+ a2b0, …,

dn+m-1=an-1bm+ anbm-1, dn+m= anbm.

aseTnairad Semotanili Sekrebisa da gamravlebis operaciis mimarT polinomTa simravle komutaciuri rgolia.

vTqvaT f(x), g(x) polinomebia, amasTanave g(x)0.

gansazRvreba. vityviT, rom g(x) yofs f(x)-s, an f(x) iyo­fa g(x)-ze da davwerT g(x)|f(x), Tu ki moiZebneba iseTi q(x) polinomi, rom f(x)=g(x)q(x).

Tu ki aseTi polinomi ar moiZebneba, maSin vityviT, rom g(x) ar yofs f(x)-s da davwerT g(x)†f(x).


Teorema. (naSTiT gayofis algoriTmi) nebismieri f(x) da g(x) polinomebisaTvis, sadac g(x)0, arsebobs q(x) da r(x) polinomTa erTaderTi wyvili iseTi, rom Sesruldeba toloba:

f(x)=g(x)q(x)+r(x), sadac r(x)=0 an deg r(x)x).

q(x)-s ewodeba ganayofi, xolo r(x)-s naSTi.

Tu r(x)=0, maSin g(x) yofs f(x)-s. g(x) aris f(x)-is gamyofi, xolo f(x) aris g(x)-is jeradi.

polinomTa udidesi saerTo gamyofi, misi povnis evklides algoriTmi, Tanamartivi polinomebi,
gansazRvreba vityviT, rom d(x)0 polinomi aris f(x) da g(x) polinomebis saerTo gamyofi, Tu d(x)|f(x) da d(x)|g(x). xolo f(x) da g(x) polinomebis udidesi saerTo gamyofi ewodeba am polinomebis im D(x) saerTo gamyofs, romelic TviTon iyofa maT nebismier saerTo gamyofze. imis aRsaniSnavad, rom D(x) aris f(x) da g(x) polinomebis udidesi saerTo gamyofi weren:

D(x)=(f(x),g(x)).



evklides algoriTmi. vaCvenoT axla, rom yovel or polinoms, romelic erTdroulad nulovani araa. gaaCnia udidesi saerTo gamyofi.

vTqvaT f1(x) da f2(x) ori iseTi polinomia, rom f2(x)0. zogadobis daurRvevlad vigulisxmoT, rom f2(x)†f1(x) (radgan Tu f2(x)|f1(x) maSin (f1(x),f2(x))=f2(x) ), amitom naSTiT gayofis algoriTmis Tanaxmad, gveqneba: f1(x)=f2(x)q1(x)+f3(x), sadac f3(x)=0, an degf3(x)2(x). Tu f3(x)=0, maSin process SevwyvetT, xolo Tu degf3(x)2(x). maSin kvlav naSTiT gayofis algoriTmis ZaliT, f2(x)=f3(x)q2(x)+f4(x), sadac an f4(x)=0, an degf4(x)3(x). Tu f4(x)=0, maSin process SevwyvetT, xolo Tu degf4(x)3(x), maSin process ganvagrZobT da a. S. ramdenime nabijis Semdeg, es procesi aucileblad Sewydeba, radgan degf2(x)>degf3(x)>degf4(x)>…

amrigad, gveqneba:

f1(x)=f2(x)q1(x)+f3(x), degf3(x)2(x),

f2(x)=f3(x)q2(x)+f4(x), degf4(x)3(x),

. . . . . . . . . . . . . . . .

fi(x)=fi+1(x)qi(x)+fi+2(x), degfi+2(x)i+1(x),

. . . . . . . . . . . . . . . .

f k-2(x)=f k-1(x)q k-2(x)+f k(x), degf k(x)k-1(x),

f k-1(x)=f k(x)q k-1(x).

ukanaskneli tolobidan gamomdinareobs, rom f k(x)|f k-1(x); amitom Tu ganvixilavT tolobebs qvemodan zemoT, miviRebT, rom fk(x)|f2(x); da fk(x)|f1(x); ); e.i. fk(x) aris f1(x) da f2(x) polinomebis saerTo gamyofi. vTqvaT axla, d(x) aris f1(x) da f2(x) polinomebis nebis­mi­eri saerTo gamyofi, maSin pirveli tolobidan d(x)|f3(x); amitom Tu ganvixilavT tolobebs zemodan qvemoT, miviRebT, rom d(x)|fk(x). maSasadame, f1(x) da f2(x) polinomebis saerTo gamyofi f k(x) iyofa f1(x) da f2(x) polinomebis nebismier saerTo gamyofze, e.i. fk(x)= (f1(x),f2(x)).

wess, romlis saSualebiTac vipoveT f1(x) da f2(x) polinomebis udidesi saerTo gamyofi (f1(x),f2(x)), evklides algoriTmi ewodeba. maSasadame, ori polinomis udi­desi saerTo gamyofi aris evklides algoriTmis ukanaskneli aranulovani naSTi.



gansazRvreba. Tu or f(x) da g(x) polinoms ar gaaCnia saerTo gamyofi garda K velis aranulovani elementebisa, maSin maT Tanamartivi polinomebi ewodeba.


dayvanadi da dauyvanadi polinomebi, polinomis daSla mamravlebad, jeradi dauyvanadi mamravlebi, polinomis fesvi, bezus Teorema
gansazRvreba. vTqvaT f(x) polinomia koeficientebiT K velidan. vityviT, rom f(x) dayvanadia K velis mimarT, Tu moiZe­bneba iseTi ori f1(x) da f2(x) polinomi koeficientebiT K velidan, rom f(x)=f1(x)f2(x), amasTanave deg f1(x)2(x) Tu ki aseTi ori polinomi koeficientebiT K velidan ar moiZebneba, maSin vityviT, rom f(x) dauyvanadia K velis mimarT. ase magaliTad, x2-1 polinomi dayvanadia Q-racionalur ricxvTa velis mimarT, radganac x2-1=(x-1)(x+1); x2-5 polinomi ki dauyvanadia Q-s mimarT, magram dayvanadia R-namdvil ricxvTa velis mimarT, radgan ; x2+1 polinomi dauyvanadia, rogorc Q-s, ise R-is mimarT, magram dayvanadia C-kompleqsur ricxvTa velis mimarT, radgan x2+1=(x-i)(x+i).

samarTliania Semdegi Teorema

Teorema. yoveli f(x) polinomi, romlis xarisxi n>0, K velis mimarT iSleba dauyvanad polinomTa namravlad da es daSla erTaderTia nulxarisxis polinomebamde sizustiT

f(x)=ap1(x)p2(x)…pr(x).

am daSlaSi Semavali dauyvanadi mamravlebi SeiZleba ar iyos gansxvavebuli. Tu romelime dauyvanadi p(x) mamravli daSlaSi gvxvdeba zustad k-jer, e. i.

pk(x)f(x), magram pk+1(x)†f(x),

maSin mas f(x) polinomis k-jeradi dauyvanadi mamravli ewodeba. kerZod, Tu p(x) mamravli daSlaSi mxolod erTxel Sedis, e. i. p(x)f(x), magram p2(x) †f(x), maSin mas f(x) polinomis martivi dauyvanadi mamravli ewodeba.

Tu vigulisxmebT, rom daSlaSi p1(x),…,ps(x) (1sr) mamravlebi erTmaneTisgan gansxvavebulia da jeradoba Sesabamisad aris k1,…,ks, maSin miviRebT daSlas:



,

romelsac ewodeba f(x) polinomis kanonikuri daSla dauyvanad mamravlebad K velis mimarT.


gansazRvreba. c eleme­nts ewodeba f(x) polinomis fesvi Tu f(c)=0, e.i. f(x) po­linomis mniSvneloba, roca x=c, aris nuli.

bezus Teorema. imisaTvis rom c elementi iyos f(x) polinomis fesvi, aucilebeli da sakmarisia, rom x-cf(x).

damtkiceba. sakmarisoba. Tu x-cf(x), maSin f(x)=(x-c)q(x), saidanac

f(c)=(c-c)q(c)=0.



aucilebloba. vTqvaT axla f(c)=0. naSTiT gayofis algoriTmis Tanaxmad, f(x)=(x-c)q(x)+r(x), sadac r(x)=0 an degr(x)<1, e.i.

f(x)=(x-c)q(x)+r, (20)

Tu miRebul tolobaSi dav­werT x-is nacvlad c-s, gveqneba:

f(c)=(c-c)q(c)+r=r,



e.i. r=0 da x-cf(x).

ricxviT koeficientebiani polinomebi
ricxviT koeficientebiani polinomebisaTvis samarTliania Semdegi Teoremebi:
1. kenti xarisxis namdvilkoeficientebian polinoms aqvs erTi mainc namdvili fesvi.


  1. namdvilkoeficientebian polinoms, romlis xarisxi n≥1 aqvs erTi mainc kompleqsuri fesvi.




  1. algebris ZiriTadi Teorema: kompleqsur ko­e­fi­ci­e­ntebian polinoms, romlis xarisxi n1 aqvs erTi mainc komple­qsuri fesvi.


4. nebismieri ricxviT koeficientebiani polinomi, romlis xarisxi n1, kompleqsur ricxvTa velis mimarT iSleba dauyvanad polinomTa namravlad. kompleqsur ricxvTa velis mimarT dauyvanadia mxolod pirveli xarisxis polinomebi.

Yüklə 49,14 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə