Microsoft Word Ostwald eb doc



Yüklə 110,26 Kb.
Pdf görüntüsü
tarix31.07.2018
ölçüsü110,26 Kb.
#59686


Biography of Wilhelm Ostwald

for Encyclopaedia Britannica

by D

R

. J



OACHIM 

S

CHUMMER



Institute of Philosophy, University of Karlsruhe,

D-76128 Karlsruhe, GERMANY

Joachim.Schummer@geist-soz.uni-karlsruhe.de

25 May, 2001




1

Ostwald, Wilhelm

in full Friedrich Wilhelm Ostwald

(b. Sept. 2, 1853, Riga, Latvia, Russia—d. April 4, 1932 Leipzig, Germany),

Russian-German chemist and philosopher who almost single-handedly

established physical chemistry as an acknowledged branch of chemistry. He was

awarded the Nobel Prize for Chemistry in 1909 for his work on catalysis,

chemical equilibria, and reaction velocities.

Early Life and Education

Wilhelm was the second son of Gottfried Ostwald, a master cooper, and

Elisabeth Leuckel, both descendants from German immigrants. After his early

education in Riga, he enrolled at the University of Dorpat (now Tartu, Estonia)

in 1872 where he studied chemistry under Carl Schmidt and received the

candidate’s degree (1875), master’s degree (1876), and doctorate (1878).

Preforming his later career, he subsequently became assistant at the Institutes of

Physics and Chemistry and lectured on physical chemistry, already the subject of

both his master and doctor thesis. In 1880, he married Helene von Reiher. They

had two daughters and three sons, of whom Wolfgang became a famous colloid

chemist. After their move to Leipzig, the Ostwalds adopted the German

nationality in 1888.

Scientific Career

In 1881, Ostwald was appointed full professor of chemistry at the Riga

Polytechnic Institute before he became chair in physical chemistry at the

University Leipzig (1887-1906). By the time he started his scientific career,

chemistry, particularly in Germany, was dominated by synthetic organic

chemistry, investigating which product can be produced from what compounds.

Ostwald recognized the lack of a more profound and quantitative understanding

of general issues of chemistry, such as the selective forces (chemical affinities or

activities) in chemical reactions, which he sought to achieve by applying

physical measurements and mathematical reasoning. To that end, already in

1875, he began studying the point of equilibrium in reactions systems where two

acids in aqueous solution compete with each other for reaction with one base and

vice versa. Since chemical analysis would have changed the equilibria, he

skillfully adapted the measurement of physical properties to that problem, such

as volume, refractive index, and electrical conductivity. The idea was not

completely new, as Julius Thomson in Denmark had already studied the heat of

such reactions. In addition, for the analysis of his experimental results, Ostwald

could draw on the important law of mass action proposed shortly before by Cato




2

Guldberg and Peter Waage in Norway. However, Ostwald made the general

approach, adapting physical measurements to issues of chemical dynamics, a

program not only of his own chemical work but also of a new school.

In 1884, Ostwald received the doctor thesis of a young Swedish

Chemist, Svante Arrhenius, on the electrical conductivity of solutions with the

bold claim that salts, acids, and bases dissociate into electrically charged ions

when dissolved in water. That dissociation theory should become a backbone of

the new school of physical chemistry (also called the “Ionists”) with which

Arrhenius soon associated himself. Ostwald immediately recognized that if all

acids contain the same active ion, the different chemical activities of acids was

simply the number of active ions dependent on the different degree of

dissociation. In addition, if the law of mass action was applied to the dissociation

reaction a simple mathematical relation could be derived between the degree of

dissociation (

α), the concentration of the acid (c), and an equilibrium constant

specific for each acid (K):

α

2



/(1-

α)c = K


This is Ostwald’s famous dissolution law (1885) which he proved to be valid by

measuring electric conductivities of over 200 organic acids and thereby

substantiated the dissociation theory.

At the same time, the Dutch chemist Jacobus Henricus van’t Hoff, who

should become the third of the “triumvirate” of the new physical chemistry

school, suggested his theory of osmosis, according to which the osmotic pressure

of solutions depends on the number of dissociated ions, in analogy to the

pressure of ideal gases. Putting his theory on general thermodynamic grounds, he

derived also Raoult’s laws of vapor pressure lowering and freezing point

depression of solutions. Thereby, the new physical chemistry grew to a

comprehensive theory of solutions, based on both thermodynamics and

dissociation theory.

Ostwald was particularly successful in systematizing the matter,

applying it to other fields, and organizing a school. That was the more important

as most chemists rejected the dissociation theory on partly justified grounds,

such that convincing them required both concessions about its restricted validity

and proofs of its broad usefulness. In many textbooks on general, inorganic, and

analytical chemistry, Ostwald presented the new ideas not only in a

comprehensive form as a new branch of chemistry, but also as an extremely

fruitful approach to classical issues. He particularly revolutionized analytical

chemistry through solution theory and his theory of indicators. His Zeitschrift für

physikalische Chemie (Journal for Physical Chemistry), founded in 1887, rapidly

established as the standard journal in the field. Furthermore, the Leipzig Institute

of Physical Chemistry attracted students and post-docs from all over the world.

Educated in both the new ideas and experimental skills, at least 60 students of

Ostwald later became professors of physical chemistry in numerous countries.

Ostwald’s later work on catalysis originated from early attempts at

taking reaction velocities as a measure of chemical activity. As that turned out to

be wrong on thermodynamic grounds, he broadly investigated temporal aspects




3

of chemical reactions and provided a systematic conception of the field. He first

recognized catalysis as the change of reaction velocity by a foreign compound,

which allowed him to measure catalytic activities. He distinguished catalysis

from triggering and from autocatalysis that he considered essential to biological

systems. His most famous contribution to applied chemistry was on catalytic

oxidation of ammonia to nitric acid, a patented process that became exploited in

the industrial production of fertilizers.

Other Notable Activities

By the late 1880s, Ostwald’s interests began to include cultural and

philosophical aspects of science. In 1889, he started republishing famous

historical papers of science in his book series Klassiker der exakten



Wissenschaften, with over 40 books only during the first four years. History of

chemistry, already part of his textbooks for educational reasons, became a

subject of its own in many further books, one of which derived from a series of

lectures he had given as the first German-American exchange professor at

Harvard in 1905/6. He was particularly interested in general laws of scientific

progress, psychological characteristics of great scientists, and conditions of

scientific creativity, all of which should serve the advancement of future science.

The more Ostwald considered thermodynamics as the fundamental

theory of science, for which he saw evidence in the pioneering works of the

American physicist Josiah W. Gibbs and others, the more did he engage in

natural philosophy. Two aspects may roughly characterize his philosophy. (1)

The primacy of energy over matter (being only a manifestation of energy), a

position that went back to 18th- and 19th-century dynamism as opposed to

materialism and which was now reformulated as “Energetics” by including the

principles of thermodynamics. (2) Positivism in the sense of rejecting theoretical

concepts that are not strictly founded on empirical grounds, a position for which

Ostwald found many contemporary proponents, such as Ernst Mach and Pierre

Duhem. Because of both aspects, he rejected atomism for about 15 years and was

heavily involved in philosophical debates with his atomist colleagues such as

Ludwig Boltzmann, before he acknowledged the growing experimental evidence

for the atomic hypothesis in 1909.

Ostwald was quick to enlarge his energetics, incorporating sociology,

psychology, and ethics. Beyond academic interest, he made it an “energetic

imperative” of his own life: “Do not squander energy—utilize it!” Since Ostwald

had strong utilitarian ideas of science, he considered every obstacle to the

progress of science as squandering of “social energy”. Thus, after his early

retirement from the chair in physical chemistry at the University of Leipzig

(1906), he became an enthusiastic reformer in educational and organizational

matters of science both on the national and international level. Ostwald was

active in numerous academies, learned societies, and international movements,

such as for the standardization of scientific documentation and the establishing

of an artificial language (he contributed to Ido, a derivative of Esperanto).




4

Moreover, since he considered both war and traditional religion as squandering

of energy, he committed himself to the international peace movement and was

president of the Deutscher Monistenbund, a scientistic quasi-religion founded by

Erich Haeckel.

Later years

A freelance at his private estate near Leipzig since 1906 with both a large library

and laboratory, Ostwald started another scientific career in color theory in his

60s, supplementing his lifelong passion for painting. Once more he applied the

multi-level approach characteristic of his earlier work. He developed instruments

for the measuring of colors, elaborated a sophisticated classification of colors in

order to derive mathematical laws of harmony, produced specimens in his

chemical laboratory, founded a factory for paintboxes, wrote several textbooks

on color theory and its history, and was active in reforms of artistic education.

After a short period suffering from bladder and prostate troubles,

Ostwald died at the age of 78 in a Leipzig hospital and was buried at his private

estate.

Ostwald was a man of science in the broadest sense, and an extremely



prolific writer. He left 45 books and many booklets, about 500 scientific papers,

5,000 reviews, the edition of 6 journals, and over 10,000 letters.

Bibliography

Ostwald’s autobiography Lebenslinien, 3 vols. (1926-1927) and the biography of

his daughter Grete Ostwald, Wilhelm Ostwald. Mein Vater (1953) provide

personal insights. Despite some shortcomings, the Russian biography by N. I.

Rodnyj and Ju. I. Solowjew, Vilgelm Ostvald (1969; trans into German, 1977) is

still a standard reference. The best English text is E. N. Hiebert & H.-G.

Körber’s entry in Dictionary of Scientific Biography (vol. XV, supp. I, 1978).

For a comprehensive bibliography see Poggendorff (VIIa, supp. 1971). Since

1996, the Wilhelm-Ostwald Gesellschaft publishes its Mitteilungen including

specific bibliographies.



Yüklə 110,26 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə