My Principals of Distributed Computing 2,000 years ago we had the words of Koheleth son of David king in Jerusalem



Yüklə 0,7 Mb.
tarix11.07.2018
ölçüsü0,7 Mb.
#55452


(my) Principals of Distributed Computing


2,000 years ago we had the words of Koheleth son of David king in Jerusalem





35 years ago we had The ALOHA network



One of the early computer networking designs, the ALOHA network was created at the University of Hawaii in 1970 under the leadership of Norman Abramson. Like the ARPANET group, the ALOHA network was built with DARPA funding. Similar to the ARPANET group, the ALOHA network was built to allow people in different locations to access the main computer systems. But while the ARPANET used leased phone lines, the ALOHA network used packet radio.

  • One of the early computer networking designs, the ALOHA network was created at the University of Hawaii in 1970 under the leadership of Norman Abramson. Like the ARPANET group, the ALOHA network was built with DARPA funding. Similar to the ARPANET group, the ALOHA network was built to allow people in different locations to access the main computer systems. But while the ARPANET used leased phone lines, the ALOHA network used packet radio.

  • ALOHA was important because it used a shared medium for transmission. This revealed the need for more modern contention management schemes such as CSMA/CD, used by Ethernet. Unlike the ARPANET where each node could only talk to a node on the other end, in ALOHA everyone was using the same frequency. This meant that some sort of system was needed to control who could talk at what time. ALOHA's situation was similar to issues faced by modern Ethernet (non-switched) and Wi-Fi networks.

  • This shared transmission medium system generated interest by others. ALOHA's scheme was very simple. Because data was sent via a teletype the data rate usually did not go beyond 80 characters per second. When two stations tried to talk at the same time, both transmissions were garbled. Then data had to be manually resent. ALOHA did not solve this problem, but it sparked interest in others, most significantly Bob Metcalfe and other researchers working at Xerox PARC. This team went on to create the Ethernet protocol.



30 years ago we had Distributed Processing Systems



Claims for “benefits” provided by Distributed Processing Systems

    • High Availability and Reliability
    • High System Performance
    • Ease of Modular and Incremental Growth
    • Automatic Load and Resource Sharing
    • Good Response to Temporary Overloads
    • Easy Expansion in Capacity and/or Function


Definitional Criteria for a Distributed Processing System

    • Multiplicity of resources
    • Component interconnection
    • Unity of control
    • System transparency
    • Component autonomy


Multiplicity of resources

  • The system should provide a number of assignable resources for any type of service demand. The greater the degree of replication of resources, the better the ability of the system to maintain high reliability and performance



Component interconnection

  • A Distributed System should include a communication subnet which interconnects the elements of the system. The transfer of information via the subnet should be controlled by a two-party, cooperative protocol (loose coupling).



Unity of Control

  • All the component of the system should be unified in their desire to achieve a common goal. This goal will determine the rules according to which each of these elements will be controlled.



System transparency

  • From the users point of view the set of resources that constitutes the Distributed Processing System acts like a “single virtual machine”. When requesting a service the user should not require to be aware of the physical location or the instantaneous load of the various resources



Component autonomy

  • The components of the system, both the logical and physical, should be autonomous and are thus afforded the ability to refuse a request of service made by another element. However, in order to achieve the system’s goals they have to interact in a cooperative manner and thus adhere to a common set of policies. These policies should be carried out by the control schemes of each element.



Challenges

  • Name spaces …

  • Distributed ownership …

  • Heterogeneity …

  • Object addressing …

  • Data caching …

  • Object Identity …

  • Trouble shooting …

  • Circuit breakers …



23 years ago I wrote my Ph.D. thesis – “Study of Load Balancing Algorithms for Decentralized Distributed Processing Systems”



BASICS OF A M/M/1 SYSTEM



BASICS OF TWO M/M/1 SYSTEMS



Wait while Idle (WwI) in m*M/M/1



“ … Since the early days of mankind the primary motivation for the establishment of communities has been the idea that by being part of an organized group the capabilities of an individual are improved. The great progress in the area of inter-computer communication led to the development of means by which stand-alone processing sub-systems can be integrated into multi-computer ‘communities’. … “

  • “ … Since the early days of mankind the primary motivation for the establishment of communities has been the idea that by being part of an organized group the capabilities of an individual are improved. The great progress in the area of inter-computer communication led to the development of means by which stand-alone processing sub-systems can be integrated into multi-computer ‘communities’. … “



18 years ago we had “Condor”







High Throughput Computing

  • We first introduced the distinction between High Performance Computing (HPC) and High Throughput Computing (HTC) in a seminar at the NASA Goddard Flight Center in July of 1996 and a month later at the European Laboratory for Particle Physics (CERN). In June of 1997 HPCWire published an interview on High Throughput Computing.



Why HTC?

  • For many experimental scientists, scientific progress and quality of research are strongly linked to computing throughput. In other words, they are less concerned about instantaneous computing power. Instead, what matters to them is the amount of computing they can harness over a month or a year --- they measure computing power in units of scenarios per day, wind patterns per week, instructions sets per month, or crystal configurations per year.



High Throughput Computing is a 24-7-365 activity



Obstacles to HTC

  • Ownership Distribution

  • Customer Awareness

  • Size and Uncertainties

  • Technology Evolution

  • Physical Distribution



Focus on the problems that are unique to HTC not the latest/greatest technology



HTC on the Internet

  • Retrieval of atmospheric temperature and humidity profiles from 18 years of data from the TOVS sensor system.

    • 200,000 images
    • ~5 minutes per image




10 years ago we had “The Grid”





“ … We claim that these mechanisms, although originally developed in the context of a cluster of workstations, are also applicable to computational grids. In addition to the required flexibility of services in these grids, a very important concern is that the system be robust enough to run in “production mode” continuously even in the face of component failures. … “

  • “ … We claim that these mechanisms, although originally developed in the context of a cluster of workstations, are also applicable to computational grids. In addition to the required flexibility of services in these grids, a very important concern is that the system be robust enough to run in “production mode” continuously even in the face of component failures. … “



In the words of the CIO of Hartford Life

  • Resource: What do you expect to gain from grid computing? What are your main goals?

  • Severino: Well number one was scalability. …

  • Second, we obviously wanted scalability with stability. As we brought more servers and desktops onto the grid we didn’t make it any less stable by having a bigger environment. 

  • The third goal was cost savings. One of the most …









What makes an “O” a “VO”?



What is new beneath the sun?

  • Distributed ownership – who defines the “system’s common goal”? No more one system.

  • Many administrative domains – authentication, authorization and trust.

  • Demand is real – many have computing needs that can not be addressed by centralized locally owned systems

  • Expectations are high – Regardless of the question, distributed technology is “the” answer.

  • Distributed computing is once again “in”.



Benefits to Science

  • Democratization of Computing – “you do not have to be a SUPER person to do SUPER computing.” (accessibility)

  • Speculative Science – “Since the resources are there, lets run it and see what we get.” (unbounded computing power)

  • Function shipping – “Find the image that has a red car in this 3 TB collection.” (computational mobility)



The NUG30 Quadratic Assignment Problem (QAP)



NUG30 Personal Grid …

  • Managed by one Linux box at Wisconsin

  • Flocking: -- the main Condor pool at Wisconsin (500 processors)

  • -- the Condor pool at Georgia Tech (284 Linux boxes)

  • -- the Condor pool at UNM (40 processors)

  • -- the Condor pool at Columbia (16 processors)

  • -- the Condor pool at Northwestern (12 processors)

  • -- the Condor pool at NCSA (65 processors)

  • -- the Condor pool at INFN Italy (54 processors)

  • Glide-in: -- Origin 2000 (through LSF ) at NCSA. (512 processors)

  • -- Origin 2000 (through LSF) at Argonne (96 processors)

  • Hobble-in: -- Chiba City Linux cluster (through PBS) at Argonne

  • (414 processors).



Solution Characteristics.



The NUG30 Workforce





“ … Grid computing is a partnership between clients and servers. Grid clients have more responsibilities than traditional clients, and must be equipped with powerful mechanisms for dealing with and recovering from failures, whether they occur in the context of remote execution, work management, or data output. When clients are powerful, servers must accommodate them by using careful protocols.… “

  • “ … Grid computing is a partnership between clients and servers. Grid clients have more responsibilities than traditional clients, and must be equipped with powerful mechanisms for dealing with and recovering from failures, whether they occur in the context of remote execution, work management, or data output. When clients are powerful, servers must accommodate them by using careful protocols.… “



Being a Master

  • Customer “delegates” task(s) to the master who is responsible for:

    • Obtaining allocation of resources
    • Deploying and managing workers on allocated resources
    • Delegating work unites to deployed workers
    • Receiving and processing results
    • Delivering results to customer


Master must be …

  • Persistent – work and results must be safely recorded on non-volatile media

  • Resourceful – delegates “DAGs” of work to other masters

  • Speculative – takes chances and knows how to recover from failure

  • Self aware – knows its own capabilities and limitations

  • Obedience – manages work according to plan

  • Reliable – can mange “large” numbers of work items and resource providers

  • Portable – can be deployed “on the fly” to act as a “sub master”



Master should not do …

  • Predictions …

  • Optimal scheduling …

  • Data mining …

  • Bidding …

  • Forecasting …



The Ethernet Protocol

  • IEEE 802.3 CSMA/CD - A truly distributed (and very effective) access control protocol to a shared service.

    • Client responsible for access control
    • Client responsible for error detection
    • Client responsible for fairness


Never assume that what you know is still true and that what you ordered did actually happen.



Resource Allocation (resource -> job) vs. Work Delegation (job -> resource)





Resource Allocation

  • A limited assignment of the “ownership” of a resource

    • Owner is charged for allocation regardless of actual consumption
    • Owner can allocate resource to others
    • Owner has the right and means to revoke an allocation
    • Allocation is governed by an “agreement” between the client and the owner
    • Allocation is a “lease”
    • Tree of allocations


“We present some principles that we believe should apply in any compute resource management system. The first, P1, speaks to the need to avoid “resource leaks” of all kinds, as might result, for example, from a monitoring system that consumes a nontrivial number of resources.

  • “We present some principles that we believe should apply in any compute resource management system. The first, P1, speaks to the need to avoid “resource leaks” of all kinds, as might result, for example, from a monitoring system that consumes a nontrivial number of resources.

    • P1 - It must be possible to monitor and control all resources consumed by a CE—whether for “computation” or “management.”
  • Our second principle is a corollary of P1:

    • P2 - A system should incorporate circuit breakers to protect both the compute resource and clients. For example, negotiating with a CE consumes resources. How do we prevent an eager client from turning into a denial of service attack?


Garbage collection is the cornerstone of resource allocation



Work Delegation

  • A limited assignment of the responsibility to perform the work

    • Delegation involved a definition of these “responsibilities”
    • Responsibilities my be further delegated
    • Delegation consumes resources
    • Delegation is a “lease”
    • Tree of delegations


Every Community can benefit from the services of Matchmakers!



Why? Because ...

  • .. someone has to bring together community members who have requests for goods and services with members who offer them.

    • Both sides are looking for each other
    • Both sides have constraints
    • Both sides have preferences


Being a Matchmaker

  • Symmetric treatment of all parties

  • Schema “neutral”

  • Matching policies defined by parties

  • “Just in time” decisions

  • Acts as an “advisor” not “enforcer”

  • Can be used for “resource allocation” and “job delegation”



Bringing it all Together







Customer requests: Place y = F(x) at L! Master delivers.



Data Placement

  • Management of storage space and bulk data transfers play a key role in the end-to-end performance of an application.

    • Data Placement (DaP) operations must be treated as “first class” jobs and explicitly expressed in the job flow
    • Fabric must provide services to manage storage space
    • Data Placement schedulers are needed.
    • Data Placement and computing must be coordinated
    • Smooth transition of CPU-I/O interleaving across software layers
    • Error handling and garbage collection


A simple DAG for y=F(x)L

  • Allocate (size(x)+size(y)+size(F)) at SE(i)

  • Move x from SE(j) to SE(i)

  • Place F on CE(k)

  • Compute F(x) at CE(k)

  • Move y to L

  • Release allocated space



Yüklə 0,7 Mb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2022
rəhbərliyinə müraciət

    Ana səhifə