Object classification and physical parametrization with gaia and other large surveys



Yüklə 522 b.
tarix02.01.2018
ölçüsü522 b.
#19061


Object classification and physical parametrization with GAIA and other large surveys

  • Coryn A.L. Bailer-Jones

  • Max-Planck-Institut für Astronomie, Heidelberg

  • calj@mpia-hd.mpg.de


Science with surveys

  • Survey characteristics

  • large numbers of objects (>106)

  • no pre-selection  different types of objects

  • (stars, galaxies, quasars, asteroids, etc.)

  • several observational ‘dimensions’ (e.g. filters, spectra)

  • Goals

  • discrete classification of objects (star, galaxy; or stellar types)

  • continuous physical parametrization (Teff, logg, [Fe/H], etc.)

  • efficient detection of new types of objects

  • SDSS, LSST, VST/VISTA, DIVA, GAIA, virtual observatory ...



GAIA Galaxy survey mission

  • Composition, formation and evolution of our Galaxy

  • High precision astrometry for distances and proper motions (10 as @ V=15  1% distance at 1kpc)

  • Observe entire sky down to V=20 @ 0.1–0.5´´ resolution

  •  109 stars across all stellar populations

  • + 105 quasars, 107 galaxies, 105 SNe, 106 SSOs

  • Observe everything in 15 medium and broad band filters

  • High resolution spectroscopy (for radial velocities) for V<17

  • Comparison to Hipparcos:

  • ×10 000 objects, ×100 precision, 11 mags deeper

  • ESA mission, “approved” for launch in c. 2011



GAIA satellite and mission

  • 8.5m × 2.9m (deployed sun shield)

  • 3100 kg (at launch)

  • Earth-Sun L2 Lissajous orbit

  • Continuously rotating (3hr period), precessing (80 days) and observing

  • 5 year mission

  • Each object observed c.100 times

  • Cost at completion: 570 MEuro



GAIA scientific payload

  • High stability SiC structure

  • Non-deployable 3-mirror telescopes

  • Optical (200-1000nm)

  • Two astrometric telescopes:

  • 1.7m×0.7m, 0.6°×0.6° FOV

  • Spectroscopic telescope:

  • 0.75m×0.7m, 1°×4° FOV



GAIA astrometric focal plane

  • CCDs clocked in TDI mode

  • 60cm × 70 cm, 250 CCDs,

  • 2780 pixels × 2150 pixels

  • 21.5s crossing time

  • Star mappers:

  • real-time onboard detection

  • (only samples transmitted due to limited telemetry rate)

  • Main astrometric field:

  • high precision centroiding

  • (0.001 pix) from high SNR

  • Four broad band filters:

  • chromatic correction



GAIA spectroscopic focal plane

  • Operates on same principle as astrometric field (independent star mappers)

  • Light dispersed in across-scan direction in central part of field:

  • ~ 1Å resolution spectroscopy around CaII (850-875nm) for V<17

  •  1-10 km/s radial velocities, abundances

  • 11 medium band filters for all objects

  • object classification, physical parameters, extinction, absolute fluxes



Classification goals for GAIA

  • Classification as star, galaxy, quasar, solar system objects etc.

  • Determination of physical parameters of all stars

  • - Teff, logg, [Fe/H], [/Fe], CNO, A(), Vrot, Vrad, activity

  • Use all data (photometric, spectroscopic, astrometric)

  • Combine with parallax to determine stellar:

  • - luminosity, radius, (mass, age)

  • Must be able to cope with:

  • - unresolved binaries (help from astrometry)

  • - photometric variability (can exploit: Cepheids, RR Lyrae)

  • - redshifted objects

  • - extended object (can deal with separately)



Classification/Parametrization Principles

  • Partition multidimensional data space to:

  • 1. classify objects into known classes

  • 2. parametrize objects on continuous physical scales

  • Assign classes/parameters in presence of noise

  • Multiple 2-dimensional colour-colour diagrams inadequate!

  • 1. direct probabilistic methods (Goebel et al. 1989; Christlieb et al. 1998)

  • neural networks (Storrie-Lombardi et al. 1992; Odewahn et al. 1993)

  • clustering methods

  • 2. neural networks (Weaver & Torres-Dodgen 1995,1997; Singh et al. 1998

  • Bailer-Jones 1996,2000; Snider et al. 2001)

  • MDM (Katz et al. 1998; Elsner et al. 1999; Vansevicius et al. 2002)

  • Gaussian Processes (krigging) (Bailer-Jones et al. 1999)



Neural Networks (NNs)

  • Functional mapping:

  • parameters = f(data; weights)

  • Weights determined by training on pre-classified data

  •  least squares minimization of

  • total classification error

  • global interpolation of data

  • Problems:

  • local minima

  • training data distribution

  • missing and censored data



Minimum Distance Methods (MDMs)

  • Assign parameters according to nearest template(s) (k-nn, 2 min.)

  • Generally interpolate:

  • either in data space: = f(d; w)

  • or in parameter space: D = g(; w)

  • new = which minimizes D

  • Local methods

  • Problems:

  • distance weighting

  • number of neighbours (bias/variance)

  • simultaneous determination of multiple parameters

  • speed? (109 in c. 1 week  1500/s)

  •  = astrophysical parameter; d = data



Challenges for large, deep surveys

  • General

  • interstellar extinction

  • photometric variability (pulsating stars, quasars)

  • multiple solutions (data degeneracy: noise dependent)

  • incorporation of prior information (iterative solutions)

  • robust to missing and censored data

  • known noise model: uncertainty predictions

  • template/training data: real vs. synthetic vs. mix

  • Additional for GAIA (and DIVA)

  • unresolved binary stars (biases parameters)

  • use parallax information and local astrometry/RVs

  • Most work to date has been on ‘cleaned’ (i.e. biased) data sets



Summary

  • Large, deep surveys produce complex, inhomogeneous, multi-dimensional datasets

  • Powerful, robust, automated methods for object classification and physical parametrization are required, but ...

  • ... many issues remain to be addressed

  • GAIA presents particular challenges:

  • photometric, spectroscopic, astrometric and kinematic data

  • broad science goals  wide range of objects to be classified

  • Discrete vs. continuous, local vs. global methods

  • (NNs, MDMs, GPs, clustering methods)

  • Existing methods to be extended; new methods to be explored

  • New members of GAIA Classification WG always welcome!



Yüklə 522 b.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə