O’zbekiston respublikay va o’rta maxsus



Yüklə 0,65 Mb.
səhifə1/4
tarix26.05.2022
ölçüsü0,65 Mb.
#87991
  1   2   3   4
parametrga bogliq integrallar
29.BERILGAN NUQTASIDAN KANONIK TENGLAMASI BILAN ELIPSGA O’TKAZILGAN URINMANING TENGLAMASI

O’ZBEKISTON RESPUBLIKASI OLIY VA O’RTA MAXSUS
TA’LIM VAZIRLIGI

AL-XORAZMIY NOMLI


URGANCH DAVLAT UNIVERSITITENING


MATEMATIKA FAKULTETI

403-GURUH TALABASI




MATYOQUBOVA MOHIRANING

MATEMATIK ANALIZ FANIDAN YOZGAN



MAVZU: Parametrga bog’liq integrallar.

TOPSHIRDI: Matyoqubova Mohira


QABUL QILDI: Vaisova Mohira

URGANCH 2008-YIL




MAVZU: PARAMETRGA BOG’LIQ INTEGRALLAR.
REJA:
1.PARAMETRGA BOG’LIQ INTEGRALLARNING BOSHLANG’ICH
TUSHUNCHALARI.
2.PARAMETRGA BOG’LIQ INTEGRALLARNING FUNKSIONAL
XOSSALARI.
3.PARAMETRGA BOG’LIQ INTEGRALLARNING UMUMIY XOLI.
4. XULOSA.


ANNOTATSIYA
Bizga funksiya biror to’lamda berilgan bo’lsin . Bu funksiyaning bitta o’xgaruvchisidan boshqa barcha o’zgaruvchilarini o’zgarmas deb hisoblasak,u holda funksiya bitta
o’zgaruvchiga bog’liq bo’gan funksiyaga aylanadi. Uning shu o’zgaruvchi
bo’yicha integrali , ravshanki larga bog’liq bo’ladi. Bunday integrallar parametrga bog’liq integrallar tushunchasiga olib keladi.
Soddalik uchun ikki o’zgaruvchili f (x,y) funksiyaning bitta o’zgaruvchi bo’yicha integralini o’rganamiz.
funksiya fazodagi biror

to’plamda berilgan bo’lsin. Y o’zgaruvchining to’plamdan olingan har bir tayinlangan qiymatida funksiya x o’zgaruvchisi bo’yicha [a,b] oraliqda integrallanuvchi, ya’ni

integral mavjud bo’lsin. Ravshanki, bu integral y o’zgaruvchining E to’plamdan olingan qiymatiga bog’liq bo’ladi:
(1)
Odatda (1) integral parametrga bog’liq integral deb ataladi, y o’zgaruvchi esa parametr deyiladi.
Parametrga bog’liq integrallarda, funksiyaning funksional xossalariga (limiti, uzluksizligi, diferensiallanuvchiligi, integrallanuvchiligi va hakazo) ko’ra Ф (y) funksiyaning tegishli funksional xossalari o’rganiladi

1. PARAMETRGA BOG’LIQ INTEGRALNING BOSHLANG’ICH


TUSHUNCHASI.

Bizga funksiya biror to’lamda berilgan bo’lsin . Bu funksiyaning bitta o’xgaruvchisidan boshqa barcha o’zgaruvchilarini o’zgarmas deb hisoblasak,u holda funksiya bitta


o’zgaruvchiga bog’liq bo’gan funksiyaga aylanadi. Uning shu o’zgaruvchi
bo’yicha integrali , ravshanki larga bog’liq bo’ladi. Bunday integrallar parametrga bog’liq integrallar tushunchasiga olib keladi.
Soddalik uchun ikki o’zgaruvchili f (x,y) funksiyaning bitta o’zgaruvchi bo’yicha integralini o’rganamiz.
funksiya fazodagi biror

to’plamda berilgan bo’lsin. Y o’zgaruvchining to’plamdan olingan har bir tayinlangan qiymatida funksiya x o’zgaruvchisi bo’yicha [a,b] oraliqda integrallanuvchi, ya’ni

integral mavjud bo’lsin. Ravshanki, bu integral y o’zgaruvchining E to’plamdan olingan qiymatiga bog’liq bo’ladi:
(1)
Odatda (1) integral parametrga bog’liq integral deb ataladi, y o’zgaruvchi esa parametr deyiladi.
Parametrga bog’liq integrallarda, funksiyaning funksional xossalariga (limiti, uzluksizligi, diferensiallanuvchiligi, integrallanuvchiligi va hakazo) ko’ra Ф (y) funksiyaning tegishli funksional xossalari o’rganiladi. Bunday xossalarni o’rganishda funksiyaning y o’zgaruvchisi bo’yicha limiti va unga intilishi xarakteri muhim rol o’ynaydi.

Yüklə 0,65 Mb.

Dostları ilə paylaş:
  1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2022
rəhbərliyinə müraciət

    Ana səhifə