Ruxandra Costescu Erica Saltzman



Yüklə 523 b.
tarix27.02.2018
ölçüsü523 b.
#28450


Molecular Dynamics Simulation of Thermal Conduction over Silicon-Germanium Interface

  • Ruxandra Costescu

  • Erica Saltzman

  • Zhi Tang


Purpose

  • Thermal conductivity ()  a measure of thermal transport

  •  behavior across interfaces is little-understood and drastically different from bulk behavior; interface thermal conductance (C) is significant for ultra-thin films (~100 nm).

  • Si and Ge are important to semiconductor and microelectronics industries



Previous Research



Geometry



Boundary Conditions



Temperature Regulations



Tersoff Potential



Calculations





Results

  • At 120 K



Results

  • Thermal conductivity



Results

  • Interface conductance results



Results

  • Si+Ge(MD) smaller than eq as expected and the right order of magnitude; but dependence on temperature unclear

  • DMM prediction of ~108 W/(m2 K) at 80 K reasonably close to calculated range of CSi/Ge

  • Our values range from ~ 2 - 5  107 W/(m2 K)  the right order of magnitude of C

  • Preliminary calculation for opposite direction of temp. gradient shows drastically different behavior (approximations fail?)



Results

  • Fe (“fictitious force”)

  • quantum correction

  • direction of temperature gradient

  • interface geometry

  • compare t.c. results to exactly equivalent experimental data



References

  • 1. S.M. Lee, D.G. Cahill, and R. Venkatasubramanian, Appl. Phys. Lett. 70 22 (1997) 2957.

  • 2. S. Berber, Y.K. Kwon, and D. Tomanek, Phys. Rev. Lett. 84 20 (2000) 4613.

  • 3. D.G. Cahill, A. Bullen, and S.-M. Lee, High temp. - High press. 32 (2000) 134.

  • 4. S. Volz, J.B. Saulnier, G.Chen, and P. Beauchamp, Microelect. J. 75 14 (1999) 2056.

  • 5. J. Zi, K. Zhang and X. Xie, Appl. Phys. Lett. 57 2 (1990) 165.

  • 6. S.Q. Zhou, G. Chen, J.L. Liu, X.Y. Zheng, and K.L. Wang, HTD Proc. of ASME Heat Transfer Division 361-4 (1998) 249.

  • 7. M. Dornheim and H. Teichler, Phys. Stat. Sol. (A) 171 (1999) 267.

  • 8. M.A. Osman and D. Srivastava, Nanotechn. 12 (2001) 21.

  • 9. J. Che, T. Cagin, and W. A. Goddard, Nanotec. 11 (2000) 65.

  • 10. S.G. Volz and G. Chen, Appl. Phys. Lett. 75 14 (1999) 2056.

  • 11. A. Maeda and T. Munakata, Phys. Rev. E, 52 1 (1995) 234.

  • 12. A. Maiti, G.D. Mahan, and S.T. Pantelides, Solid-State Communications 102 7 (1997) 517.

  • 13. S. Petterson and G.D. Mahan, Phys. Rev. B, 42 12 (1990) 7386.

  • 14. R. Stoner and H.J. Maris, Phys. Rev. B, 48 22 (1993) 16373.

  • 15. E.T. Swartz and R.O. Pohl, Rev. Mod. Phys., 61 (1989) 605.

  • 16. S. Matsumoto, S. Munejiri, and T. Itami, National Space Development Agency of Japan, Space Utilization Program Document. Available URL: http://jem.tksc.nasda.go.jp/utiliz/surp/ar/diffusion/3_6_.pdf.

  • 17. J. Tersoff, Phys. Rev. B, 37 (1988) 6991.

  • 18. J. Tersoff, Phys. Rev. B, 39 (1989) 5566.

  • 19. D.W. Brenner, Phys. Rev. B, 42 (1990) 9458.

  • 20. Theoretical Biophysics Group, University of Illinois, "VMD - Visual Molecular Dynamics". Available URL: http://www.ks.uiuc.edu/Research/vmd.



Yüklə 523 b.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə