Samarqand davlat universiteti raqamli texnologiyalar fakulteti dasturiy injiniring yo



Yüklə 182,49 Kb.
səhifə9/9
tarix15.04.2022
ölçüsü182,49 Kb.
#85517
1   2   3   4   5   6   7   8   9
Eshmo\'minov Sanjar 1- hisobot
Kuzgi semistr 2 kurslar imtihon jadvali, Relationship between Uncertainty Avoidance Culture

Nazorat ishi uchun namunalar

Uchburchakning uchlari A,B,C nuqtalar koordinatalari bilan berilgan. Topish kerak:

1) ABC tomonlarining tenglamalarini va uzunliklarini;

2) AB va AC tomonlar orasidagi burchak bissektirsa tenglamasini

3) AD balandlik tenglamasi va uzunligini

4) AE mediana tenglamsini

5) ABC ni ichki burchaklarini

6) ABC ning yuzini

1


2

3


4

5


6

A (2;2),

B (3;3),

C (-4;4)

A (1;3),

B (2;1),

C (2;-1)

A (1; -1),

B (6;1),

C (4;3)

A (-1;1),

B (6;-1),

C (4;-3)

A (2;-1),

B (6;-1),

C (-4;3)

A (1;-6),

B (2;1),

C (0;1)

7



8

9


10

11


12

A (2;1),

B (-2;1),

C (2;0)

A (1;2),

B (-1;-2),

C (0;-3),

A (1;-2),

B (-1;-1),

C (15;-1)

A (2;2),

B (-2;-2),

C (0;2),

A (3;-1),

B (1;-2),

C (3;-3)

A (1;5),

B (2;-2),

C (-4;2)

13



14

15


16

17


18

A (1;4),

B (2;3),

C (-4;2)

A (1;1),

B (2;2),

C (3;-3)

A (2;2),

B (1;1),

C (-1;5)

A (-4;4),

B (3;3),

C (0;1)

A (1;2),

B (2;1),

C (2;0)

A (3;3),

B (-3;3),

C (0;6)

19



20

21


22

23


24

A (2;2),

B (4;1),

C (2;0)

A (2;1),

B (3;-3),

C (1;4)

A (1;3),

B (4;1),

C (0;5)

A (1;4),

B (1;1),

C (2;0)

A (-4;3),

B (3;2),

C (3;0)

A (1;1),

B (-1;2),

C (4;3)

25



26

27


28

29


30

A (-6;7),

B (2;1),

C (0;-1)

A (4;3),

B (0;4),

C (1;1)

A (4;1),

B (1;-5),

C (2;2)

A (6;-2),

B (1;0),

C (3;0)

A (2;-5),

B (0;3),

C (1;1)

A (3;-3),

B (-1;0),

C (2;1)

Koordi


nata

Koordi


nata

Koordi


nata

Koordi


nata

Koordi


na

> with(geometry);

> point(A,3,1 ), point(B, 1, -2);

> l1 := line(AB, [A, B]);

print(`output redirected...`); # input placeholder

AB

> Equation(AB, [x, y]);



print(`output redirected...`); # input placeholder

-x + y = 0

> with(geometry);

> point(A, 2, 2), point(C, 3, -3);

> l2 := line(AC, [A, C]);

print(`output redirected...`); # input placeholder

AC

> Equation(AC, [x, z]);



print(`output redirected...`); # input placeholder

16 - 2 x - 6 z = 0

> with(geometry);

> point(B, 1 -2) (BC, [B, C]);

print(`output redirected...`); # input placeholder

BC

> Equation(BC, [y, z]);



print(`output redirected...`); # input placeholder

24 - y - 7 z = 0

> with(geometry);

> triangle(ABC, [point(A3, -1), point(B, 1, -2), point(C, -3,-3)]);

> distance(A, B); distance(A, C); distance(B, C);

print(`output redirected...`); # input placeholder

(1/2)

2


(1/2)

40


(1/2)

50


> sides(ABC);

print(`output redirected...`); # input placeholder

[ (1/2) (1/2) (1/2)]

[2 , 50 , 40 ]

> with(geometry);

> EnvHorizontalName := 'x'; _EnvVerticalName := 'y';

> line(AB, -X-Y = 0), line(AC, 16-2*x-6*Z = 0);

%;

Warning, computation interrupted



> hi := FindAngle(AB, AC);

print(`output redirected...`); # input placeholder

/1\

arctan|-|



\2/

> hi := evalf(hi);

print(`output redirected...`); # input placeholder

0.4636476090

> with(geometry);

> triangle(ABC, [point(A, 2, 2), point(B, 3, 3), point(C, -4, 4)]);

> altitude(hA1, A, ABC);

print(`output redirected...`); # input placeholder

hA1

> form(hA1);



print(`output redirected...`); # input placeholder

line2d


> detail(hA1);

print(`output redirected...`); # input placeholder

assume that the names of the horizontal and vertical axes are _x and _y, respectively

GeometryDetail(["name of the object", hA1], ["form of the object", line2d],


["equation of the line", 12 - 7 _x + _y = 0])

> with(geometry);

> assume(m <> 0);

> line(BC, 24-y-7*Z = 0, [x, y]); distance(A, BC);

print(`output redirected...`); # input placeholder

|-22 + 7 Z|

> with(geometry);

> triangle(ABC, [point(A, 2, 2), point(B, 3, 3), point(C, -4, 4)]);

> median(mA, A, ABC);

print(`output redirected...`); # input placeholder

mA

> form(mA);



print(`output redirected...`); # input placeholder

line2d


> detail(mA);

print(`output redirected...`); # input placeholder

assume that the names of the horizontal and vertical axes are _x and _y, respectively

/


GeometryDetail|["name of the object", mA], ["form of the object", line2d],

\
[ 3 5 ]\

["equation of the line", 8 - - _x - - _y = 0]|

[ 2 2 ]/


> median(mA, A, ABC, E);

print(`output redirected...`); # input placeholder

mA

> form(mA);



print(`output redirected...`); # input placeholder

segment2d

> coordinates(E);

print(`output redirected...`); # input placeholder

[-1 7]

[--, -]


[2 2]

> detail(mA);

print(`output redirected...`); # input placeholder

/


GeometryDetail|["name of the object", mA], ["form of the object", segment2d],

\
[ [ [-1 7]]]\

["the two ends of the segment", [[2, 2], [--, -]]]|

[ [ [2 2]]]/

> with(geometry);

> s := [point(A, 2, 2), point(B, 3, 3), point(C, -4, 4)];

print(`output redirected...`); # input placeholder

[A, B, C]

> centroid(G, s);

print(`output redirected...`); # input placeholder

G

> form(G);



print(`output redirected...`); # input placeholder

point2d


> coordinates(G);

print(`output redirected...`); # input placeholder

[1 ]

[-, 3]


[3 ]

> detail(G);

print(`output redirected...`); # input placeholder

/


GeometryDetail|["name of the object", G], ["form of the object", point2d],

\
[ [1 ]]\

["coordinates of the point", [-, 3]]|

[ [3 ]]/


> with(geometry);

> triangle(T, [point(A, 2, 2), point(B, 3, 3), point(C, -4, 4)]);

> medial(mT, T);

print(`output redirected...`); # input placeholder

mT

> detail(mT);



print(`output redirected...`); # input placeholder

/


GeometryDetail|["name of the object", mT], ["form of the object", triangle2d],

\
["method to define the triangle", points],


[ [[5 5] [-1 7]]]\

["the three vertices", [[-, -], [-1, 3], [--, -]]]|

[ [[2 2] [2 2]]]/

> with(geometry);

> triangle(ABC, [point(A, 2, 2), point(B, 3, 3), point(C, -4, 4)]);

> bisector(bA, A, ABC);

print(`output redirected...`); # input placeholder

bA

> Equation(bA, [x, y]);



print(`output redirected...`); # input placeholder

/ (1/2) (1/2)\ / (1/2) (1/2)\ (1/2)

\-2 2 - 40 / x + \40 - 6 2 / y + 16 2 = 0

> detail(bA);

print(`output redirected...`); # input placeholder

/


GeometryDetail\["name of the object", bA], ["form of the object", line2d],
[

["equation of the line",


/ (1/2) (1/2)\ / (1/2) (1/2)\ (1/2) ]\

\-2 2 - 40 / x + \40 - 6 2 / y + 16 2 = 0]/

> with(geometry);

> triangle(ABC, [point(A, 2, 2), point(B, 3, 3), point(C, -4, 4)]);

> ExternalBisector(bA, A, ABC);

print(`output redirected...`); # input placeholder

bA

> Equation(bA, [x, y]);



print(`output redirected...`); # input placeholder

/ (1/2) (1/2)\ / (1/2) (1/2)\ (1/2) (1/2)

\40 - 6 2 / x + \2 2 + 40 / y + 8 2 - 4 40 = 0

> detail(bA);

print(`output redirected...`); # input placeholder

/


GeometryDetail\["name of the object", bA], ["form of the object", line2d],
[

["equation of the line",


/ (1/2) (1/2)\ / (1/2) (1/2)\ (1/2) (1/2) ]\

\40 - 6 2 / x + \2 2 + 40 / y + 8 2 - 4 40 = 0]/

> bisector(ibA, A, ABC);

> ArePerendicular(bA, ibA);

print(`output redirected...`); # input placeholder

ArePerendicular(bA, ibA)

> restart;

> with(geometry);

> triangle(ABC, [point(A, 2, 2), point(B, 3, 3), point(C, -4, 4)]);

> bisector(bA, A, ABC, N);

print(`output redirected...`); # input placeholder

bA

> form(bA);



print(`output redirected...`); # input placeholder

segment2d

> OnSegment(N, B, C, sqrt(212/(61.)));

print(`output redirected...`); # input placeholder

N

> coordinates(N);



print(`output redirected...`); # input placeholder

[-1.556075082, 3.650867870]

> detail(bA);

print(`output redirected...`); # input placeholder

GeometryDetail(["name of the object", bA], ["form of the object", segment2d],
["the two ends of the segment", [[2, 2], [-1.556075082, 3.650867870]]])

> with(geometry);

> triangle(ABC, [point(A, 2, 2), point(B, 3, 3), point(C, -4, 4)]); line(BC, [B, C]);

print(`output redirected...`); # input placeholder

BC

> ParallelLine(lA, A, BC);



print(`output redirected...`); # input placeholder

lA

> Equation(lA, [x, y]);



print(`output redirected...`); # input placeholder

16 - x - 7 y = 0

> detail(lA);

print(`output redirected...`); # input placeholder

GeometryDetail(["name of the object", lA], ["form of the object", line2d],
["equation of the line", 16 - x - 7 y = 0])

>


>

>


>

XULOSA:


BIZ MEPLE dasturi orqali uchburchakning tomonlarini tenglamalarini tomonlari orqali bessektritsa tenglamalarini medina tenglamalarrini yuzini topishni organdik.

Foydalanilgan adabiyotlar


1. Матросов А. Решение задач математики и механики в среде Maple 6. СПб.: Питер, 2000.

2. В.З. АЛАДЬЕВ. Основы программирования в Maple. Таллинн, 2006.

3. Основы использования математического пакета Maple в моделировании: Учебное пособие / Международный институт компьютерных технологий. Липецк, 2006. 119с.

4. Дьяконов В. Maple 6. Учебный курс СПб.: Питер, 2001.

5. Аладьев В.З., Лиопо В.А., Никитин А.В. Математический пакет Maple в физическом моделировании.- Гродно: Гродненский госу-дарственный университет им. Янки Купалы, 2002, 416 с.

6. O’runbayev E., Murodov F. Kompyuter algebrasi tizimlarining amaliy tadbiqlari. –SamDU nashri – Samarqand, 2003, 96 s.



7. Аладьев В.З., Богдявичюс М.А. Решение физико-технических и математических задач с пакетом Maple V.- Вильнюс: Изд-во Техника, 1999, 686 c., ISBN 9986-05-398-6.

8. Аладьев В.З., Богдявичюс М.А. Maple 6: Решение математичес-ких, статистических и инженерно-физических задач.- Москва: Лаборатория Базовых Знаний, 2001, 850 с. + CD-ROM, ISBN 5-93308-085-X.

9. Математика на компьютере: Maple 8. — М.: СОЛОН-Пресс, 2003.176 с:
Yüklə 182,49 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2022
rəhbərliyinə müraciət

    Ana səhifə