Supl79-02-b-ingles p65



Yüklə 176,92 Kb.
Pdf görüntüsü
səhifə7/7
tarix06.05.2018
ölçüsü176,92 Kb.
#41735
1   2   3   4   5   6   7

S158

  

Jornal de Pediatria - Vol.79, Supl.2, 2003



References

1. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson

L, et al. The American-European Consensus Conference on

ARDS. Definitions, mechanisms, relevant outcomes, and clinical

trial coordination. Am J Respir Crit Care Med 1994;149:818-24.

2. Luhr OR, Antonsen K, Karlsson M, Aardal S, Thorsteinsson A,

Frostell CG, et al. Incidence and mortality after acute respiratory

failure and acute respiratory distress syndrome in Sweden,

Denmark, and Iceland. The ARF Study Group. Am J Respir Crit

Care Med 1999;159:1849-61.

3. Suchyta MR, Clemmer TP, Orme JF Jr, Morris AH, Elliott CG.

Increased survival of ARDS patients with severe hypoxemia

(ECMO criteria). Chest 1991;99:951-5.

4. Milberg JA, Davis DR, Steinberg KP, Hudson LD. Improved

survival of patients with acute respiratory distress syndrome

(ARDS): 1983-1993. JAMA 1995;273:306-9.

5. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino

GP, Lorenzi-Filho G, et al. Effect of a protective-ventilation

strategy on mortality in the acute respiratory distress syndrome.

N Engl J Med 1998;338:347-54.

6. Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute

respiratory distress in adults. Lancet 1967;2:319-23.

7. Matalon S, Holm BA, Loewen GM, Baker RR, Notter RH.

Sublethal hyperoxic injury to the alveolar epithelium and the

pulmonary surfactant system. Exp Lung Res 1988;14 Suppl:

1021-33.


8. Nader-Djalal N, Knight PR 3rd, Thusu K, Davidson BA, Holm

BA, Johnson KJ, et al. Reactive oxygen species contribute to

oxygen-related lung injury after acid aspiration. Anesth Analg

1998;87:127-33.

9. Yusa T, Crapo JD, Freeman BA. Hyperoxia enhances lung and

liver nuclear superoxide generation. Biochim Biophys Acta

1984;798:167-74.

10. Delclaux C, L’Her E, Alberti C, Mancebo J, Abroug F, Conti G,

et al. Treatment of acute hypoxemic nonhypercapnic respiratory

insufficiency with continuous positive airway pressure delivered

by a face mask: A randomized controlled trial. JAMA

2000;284:2352-60.

11. Gattinoni L, Presenti A, Torresin A, Baglioni S, Rivolta M, Rossi

F, et al. Adult respiratory distress syndrome profiles by computed

tomography. J Thorac Imaging 1986;1:25-30.

12. Gattinoni L, Pesenti A, Bombino M, Baglioni S, Rivolta M,

Rossi F, et al. Relationships between lung computed tomographic

density, gas exchange, and PEEP in acute respiratory failure.

Anesthesiology 1988;69:824-32.

13. Slutsky AS. Lung injury caused by mechanical ventilation.

Chest. 1999;116(1 Suppl):9-15.

14. Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM,

Brienza A, et al. Effect of mechanical ventilation on inflammatory

mediators in patients with acute respiratory distress syndrome: a

randomized controlled trial. JAMA 1999;282:54-61.

15. The Acute Respiratory Distress Syndrome Network. Ventilation

with lower tidal volumes as compared with traditional tidal

volumes for acute lung injury and the acute respiratory distress

syndrome. N Engl J Med 2000;342:1301-8.

16. Dreyfuss D, Soler P, Basset G, Saumon G. High inflation

pressure pulmonary edema. Respective effects of high airway

pressure, high tidal volume, and positive end-expiratory pressure.

Am Rev Respir Dis 1988;137:1159-64.

17. Rotta AT, Gunnarsson B, Fuhrman BP, Hernan LJ, Steinhorn

DM. Comparison of lung protective ventilation strategies in a

rabbit model of acute lung injury. Crit Care Med 2001;29:2176-84.

Acute respiratory distress syndrome – Rotta AT 

et alii


Psychological support

The psycho-social needs of the family and the patient

with ARDS are extremely complex. Even in adequately

sedated patients, factors such as anxiety over the uncertainty

of the clinical outcome, the impossibility of speech due to

the artificial airway, the occasional pain due to invasive

procedures and the changes to the awake and sleep cycles,

among others, cannot be neglected by the medical team.

Attention must be afforded to explain to the patient (whenever

possible) and the family all the diagnostic and therapeutic

procedures and also the natural course and prognosis of the

condition. It is common for adolescent patients and older

children in the recovery phase of ARDS to exhibit delirium,

depression or altered circadian patterns during prolonged

hospitalization in an ICU environment. Such manifestations

often require the involvement of a psychiatric consultant to

monitor patients during recovery and after hospital discharge.

The multidisciplinary medical team should always be alert

to and available for the psychological needs of ARDS

patients and their families, particularly because ICU hospital

stays due to severe ARDS are prolonged and generally

marked by oscillation between periods of frustration and

optimism.

Monitoring the patient

Patients with ARDS represent a relatively severe stratum

of the population of a tertiary ICU. As such, these patients

require a high level of monitoring so that data can be

obtained and integrated in real time for individual strategic

treatment planning. Patients with ARDS routinely require

an arterial catheter for continuous arterial pressure

monitoring and for obtaining serial arterial blood gas

analysis. A central venous catheter with two or three

lumens is used for the administration of fluids and drugs

and also for continuous measurement of the central

venous pressure. A urinary catheter permits the precise

measurement of urinary output and control of the fluid

balance. Continuous pulse oximetry is used for real time

assessment of oxygenation. Analysis of exhaled carbon

dioxide curves provides a continuous data for inferring

ventilation, pulmonary perfusion and dead space.

Respiratory monitoring via graphic interfaces allows for

the real time visualization of a series of respiratory

parameters derived from pressure, flow, time and volume.

Serial echocardiography is a good method for monitoring

the degree of atrial filling (preload) as well as the cardiac

function resulting form different combinations of

inotropic drugs and states of intravascular expansion. In

our experience, a pulmonary artery catheter (Swan-Ganz)

has little use in patients with ARDS with no primary

cardiac involvement. The use of such catheters rarely

alters the management based on data obtained from the

auxiliary technologies described above. Patients receiving

continuous neuromuscular blockade should be monitored

with nerve stimulators to avoid the unnecessary use of

exaggerated drug doses.




Jornal de Pediatria - Vol.79, Supl.2, 2003 

 S159

18. Brochard L, Roudot-Thoraval F, Roupie E, Delclaux C, Chastre

J, Fernandez-Mondejar E, et al. Tidal volume reduction for

prevention of ventilator-induced lung injury in acute respiratory

distress syndrome. The Multicenter Trial Group on Tidal Volume

reduction in ARDS. Am J Respir Crit Care Med 1998;158:1831-8.

19. Stewart TE, Meade MO, Cook DJ, Granton JT, Hodder RV,

Lapinsky SE, et al. Evaluation of a ventilation strategy to prevent

barotrauma in patients at high risk for acute respiratory distress

syndrome. Pressure- and Volume-Limited Ventilation Strategy

Group. N Engl J Med 1998;338:355-61.

20. Ranieri VM, Giunta F, Suter PM, Slutsky AS. Mechanical

ventilation as a mediator of multisystem organ failure in acute

respiratory distress syndrome. JAMA 2000;284:43-4.

21. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS. Injurious

ventilatory strategies increase cytokines and c-fos m-RNA

expression in an isolated rat lung model. J Clin Invest 1997;99:

944-52.

22. The Acute Respiratory Distress Syndrome Network. Prospective,



Randomized, Multi-Center Trial of Higher End-expiratory Lung

Volume/Lower FiO

2

 versus Lower End-expiratory Lung Volume/



Higher FiO

2

 Ventilation in Acute Lung Injury and Acute



Respiratory Distress Syndrome [site na internet] Disponível:

http://hedwig.mgh.harvard.edu/ardsnet/ards04.html. Acessado:

7 de abril de 2003.

23. Carvalho CR, Barbas CS, Medeiros DM, Magaldi RB, Lorenzi

Filho G, Kairalla RA, et al. Temporal hemodynamic effects of

permissive hypercapnia associated with ideal PEEP in ARDS.

Am J Respir Crit Care Med 1997;156:1458-66.

24. Feihl F, Perret C. Permissive hypercapnia. How permissive

should we be? Am J Respir Crit Care Med 1994;150:1722-37.

25. Carcillo JA, Davis AL, Zaritsky A. Role of early fluid resuscitation

in pediatric septic shock. JAMA 1991;266:1242-5.

26. Prewitt RM, McCarthy J, Wood LD. Treatment of acute low

pressure pulmonary edema in dogs: relative effects of hydrostatic

and oncotic pressure, nitroprusside, and positive end-expiratory

pressure. J Clin Invest 1981;67:409-18.

27. Mitchell JP, Schuller D, Calandrino FS, Schuster DP. Improved

outcome based on fluid management in critically ill patients

requiring pulmonary artery catheterization. Am Rev Respir Dis

1992;145:990-8.

28. Humphrey H, Hall J, Sznajder I, Silverstein M, Wood L. Improved

survival in ARDS patients associated with a reduction in

pulmonary capillary wedge pressure. Chest 1990;97:1176-80.

29. Wiswell TE, Graziani LJ, Kornhauser MS, Cullen J, Merton DA,

McKee L, et al. High-frequency jet ventilation in the early

management of respiratory distress syndrome is associated with

a greater risk for adverse outcomes. Pediatrics 1996;98:1035-43.

30. Froese AB. Role of lung volume in lung injury: HFO in the

atelectasis-prone lung. Acta Anaesthesiol Scand Suppl

1989;90:126-30.

31. McCulloch PR, Forkert PG, Froese AB. Lung volume maintenance

prevents lung injury during high frequency oscillatory ventilation

in surfactant-deficient rabbits. Am Rev Respir Dis 1988;137:

1185-92.

32. Arnold JH, Hanson JH, Toro-Figuero LO, Gutierrez J, Berens

RJ, Anglin DL. Prospective, randomized comparison of high-

frequency oscillatory ventilation and conventional mechanical

ventilation in pediatric respiratory failure. Crit Care Med

1994;22:1530-9.

33. Derdak S, Mehta S, Stewart TE, Smith T, Rogers M, Buchman

TG, et al. High-frequency oscillatory ventilation for acute

respiratory distress syndrome in adults: a randomized, controlled

trial. Am J Respir Crit Care Med 2002;166:801-8.

34. Courtney SE, Durand DJ, Asselin JM, Hudak ML, Aschner JL,

Shoemaker CT. High-frequency oscillatory ventilation versus

conventional mechanical ventilation for very-low-birth-weight

infants. N Engl J Med 2002;347:643-52.

35. Sugiura M, McCulloch PR, Wren S, Dawson RH, Froese AB.

Ventilator pattern influences neutrophil influx and activation in

atelectasis-prone rabbit lung. J Appl Physiol 1994;77:1355-65.

36. Fuhrman BP, Paczan PR, DeFrancisis M. Perfluorocarbon-

associated gas exchange. Crit Care Med 1991;19:712-22.

37. Rotta AT, Steinhorn DM. Partial liquid ventilation reduces

pulmonary neutrophil accumulation in an experimental model of

systemic endotoxemia and acute lung injury. Crit Care Med

1998;26:1707-15.

38. Rotta AT, Gunnarsson B, Hernan LJ, Fuhrman BP, Steinhorn

DM. Partial liquid ventilation with perflubron attenuates in vivo

oxidative damage to proteins and lipids. Crit Care Med 2000;

28:202-8.

39. Rotta AT, Gunnarsson B, Hernan LJ, Fuhrman BP, Steinhorn

DM. Partial liquid ventilation influences pulmonary

histopathology in an animal model of acute lung injury. J Crit

Care 1999;14:84-92.

40. Rotta AT, Gunnarsson B, Hernan LJ, Fuhrman BP, Steinhorn

DM. Perflubron protects cell monolayers against direct in vitro

oxidative injury. Crit Care Med 1999;27:A40.

41. Rotta AT, Gunnarsson B, Hernan LJ, Fuhrman BP, Steinhorn

DM. Perfluorocarbon protects against fatty acid oxidation in a

non-biological, in vitro model. Crit Care Med 1999;27:A133.

42. Hirschl RB, Croce M, Gore D, Wiedemann H, Davis K,

Zwischenberger J, et al. Prospective, randomized, controlled

pilot study of partial liquid ventilation in adult acute respiratory

distress syndrome. Am J Respir Crit Care Med 2002;165:781-7.

43. Anzueto A, Baughman RP, Guntupalli KK, Weg JG, Wiedemann

HP, Raventos AA, et al. Aerosolized surfactant in adults with

sepsis-induced acute respiratory distress syndrome. Exosurf

Acute Respiratory Distress Syndrome Sepsis Study Group. N

Engl J Med 1996;334:1417-21.

44. Willson DF, Zaritsky A, Bauman LA, Dockery K, James RL,

Conrad D, et al. Instillation of calf lung surfactant extract

(calfactant) is beneficial in pediatric acute hypoxemic respiratory

failure. Members of the Mid-Atlantic Pediatric Critical Care

Network. Crit Care Med 1999;27:188-95.

45. Clark RH, Kueser TJ, Walker MW, Southgate WM, Huckaby JL,

Perez JA, et al. Low-dose nitric oxide therapy for persistent

pulmonary hypertension of the newborn. Clinical Inhaled Nitric

Oxide Research Group. N Engl J Med 2000;342:469-74.

46. Dellinger RP, Zimmerman JL, Taylor RW, Straube RC, Hauser

DL, Criner GJ, et al. Effects of inhaled nitric oxide in patients

with acute respiratory distress syndrome: results of a randomized

phase II trial. Inhaled Nitric Oxide in ARDS Study Group. Crit

Care Med 1998;26:15-23.

47. Luce JM, Montgomery AB, Marks JD, Turner J, Metz CA,

Murray JF. Ineffectiveness of high-dose methylprednisolone in

preventing parenchymal lung injury and improving mortality in

patients with septic shock. Am Rev Respir Dis 1988;138:62-8.

48. Bernard GR, Luce JM, Sprung CL, Rinaldo JE, Tate RM, Sibbald

WJ, et al. High-dose corticosteroids in patients with the adult

respiratory distress syndrome. N Engl J Med 1987;317:1565-70.

49. Meduri GU, Belenchia JM, Estes RJ, Wunderink RG, el Torky

M, Leeper KV Jr. Fibroproliferative phase of ARDS. Clinical

findings and effects of corticosteroids. Chest 1991;100:943-52.

50. ARDS N. Ketoconazole for early treatment of acute lung injury

and acute respiratory distress syndrome: a randomized controlled

trial. The ARDS Network. JAMA 2000;283:1995-2002.

51. Morris AH, Wallace CJ, Menlove RL, Clemmer TP, Orme JF Jr,

Weaver LK, et al. Randomized clinical trial of pressure-controlled

inverse ratio ventilation and extracorporeal CO

2

 removal for



adult respiratory distress syndrome. Am J Respir Crit Care Med

1994;149:295-305.

Acute respiratory distress syndrome – Rotta AT 

et alii



S160

  

Jornal de Pediatria - Vol.79, Supl.2, 2003

Corresponding author:

Alexandre Tellechea Rotta

Division of Pediatric Critical Care,

The Children’s Hospital of Buffalo

219 Bryant Street

Buffalo, NY 14222, USA

Tel.: (716) 878.7442

Fax: (716) 878.7101

E-mail: arotta@buffalo.edu

52. Pappert D, Rossaint R, Slama K, Gruning T, Falke KJ. Influence

of positioning on ventilation-perfusion relationships in severe

adult respiratory distress syndrome. Chest 1994;106:1511-6.

53. Douglas WW, Rehder K, Beynen FM, Sessler AD, Marsh HM.

Improved oxygenation in patients with acute respiratory failure:

the prone position. Am Rev Respir Dis 1977;115:559-66.

54. Pelosi P, Tubiolo D, Mascheroni D, Vicardi P, Crotti S, Valenza

F, et al. Effects of the prone position on respiratory mechanics

and gas exchange during acute lung injury. Am J Respir Crit Care

Med 1998;157:387-93.

55. Gattinoni L, Tognoni G, Pesenti A, Taccone P, Mascheroni D,

Labarta V, et al. Effect of prone positioning on the survival of

patients with acute respiratory failure. N Engl J Med 2001;

345:568-73.

Acute respiratory distress syndrome – Rotta AT 



et alii

Yüklə 176,92 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə