2S4 by Post-synthetic Modification with LiCl



Yüklə 79,13 Kb.
tarix26.05.2018
ölçüsü79,13 Kb.
#46406

Supporting Information
Enhancement in CO2 Adsorption Capacity and Selectivity in the Chalcogenide Aerogel CuSb2S4 by Post-synthetic Modification with LiCl

Ejaz Ahmed and Alexander Rothenberger*


Physical Sciences and Engineering Division, King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia
Supplementary Figures:



Figure S1Powder XRD patterns; a) ternary phase KSbS2, b) predominantly amorphous nature of the unmodified gel with4wt % LiCl-doped gel, c) 7.5wt % LiCl-doped gel with simulated pattern of LiCl.
p:\ejaz\paper 4\ea166_eds.tif

Figure S2 EDS results of the CuSb2S4aerogel with SEM image in the inset.
Table S1:ICP-OES results for 1LiCl@CuSb2S4 aerogel.

Units

Cu

Sb

S

Li

PPM

135413

275680

499294

39814

%

13.54

27.57

49.93

3.98



Figure S3 EDS results of 1LiCl@CuSb2S4 aerogel.
Table S2: ICP-OES results for 2LiCl@CuSb2S4 aerogel.

Units

Cu

Sb

S

Li

PPM

131252

262136

501217

74930

%

13.13

26.21

50.12

7.49



Figure S4 EDS results of 2LiCl@CuSb2S4 aerogel.

p:\ejaz\paper 4\ea166_tga.1+2.tif

Figure S5 TGA results of the aerogels, a) CuSb2S4 and b) 2LiCl@CuSb2S4.

p:\ejaz\paper 4\ea166_uv-vis.tif

Figure S6: Solid-state UV-Vis optical absorption spectra for CuSb2S4 aerogel.

Table S3 Properties of the aerogels with respect to their surface area, porosity, skeletal density and CO2 capture capacity.

Adsorbent

BET

(m2/g)



Average Pore Size

(nm)


Pore Volume

(cm3/g)



Density

(g/cm3)



CO2 capacity

(mmol/g)


CuSb2S4

412

16.07

1.655

1.34

0.63

4wt%LiCl@CuSb2S4

371

13.48

1.252

1.89

1.51

7.5wt%LiCl@CuSb2S4

303

9.74

0.737

2.26

2.31

8wt%LiCl@CuSb2S4

274

8.44

0.563

2.71

1.93


Figure S7 TEM images of the aerogels, a) CuSb2S4, b) 1LiCl@CuSb2S4, and c) 2LiCl@CuSb2S4.


Figure S8a) N2adsorption-desorption isotherm of the aerogels, b)Pore-size (V-D) distribution plot calculated from the adsorption isotherm by the BJH method, c) Adsorption isotherms of CO2 at 273 K in CuSb2S4 and LiCl-loaded aerogels.



Figure S9 Adsorption isotherms of CO2, CH4 and H2 observed at 263 K in unmodified and LiCl-loadedaerogels.

c:\users\ahmede\desktop\picture1.tifFigure S10 Heat of adsorption in unmodified and LiCl-loaded aerogels, a) H2 and, b) CH4.



Figure S11 Fitting of Henry’s constant for CO2, CH4 and H2 in 2LiCl@CuSb2S4 aerogel.

Table S4. Empirical parameters from fitting of virial equation in 2LiCl@CuSb2S4aerogel.


Constant

CO2

CH4

H2

Quantity absorbed (mmol/g)

2.244

0.1771

0.0363

Pressure (mmHg)

760

760

760

K (mmol/g/mmHg)

0.00705

6.40776x10-5

2.76048x10-5







Figure S12 Statistics of Fitting of Henry’s constant for CO2, CH4 and H2 in 2LiCl@CuSb2S4 aerogel.


Table S5. Empirical parameters from fitting of virial equation in CuSb2S4 aerogel.


Constant

CO2

CH4

H2

Quantity absorbed (mmol/g)

0.5863

0.0563

0.0227

Pressure (mmHg)

760

760

760

K (mmol/g/mmHg)

3.12188x10-4

4.15002x10-5

7.78002x10-6








Figure S13. Fitting of Henry’s constant for CO2, CH4 and H2 in CuSb2S4 aerogel.

Figure S14 Statistics of Fitting of Henry’s constant for CO2, CH4 and H2 in CuSb2S4 aerogel.

Table S6. Comparison of CO2/H2 and CO2/CH4 selectivity in different porous materials.


Adsorbent


Surface Area

m2/g

Temperature



K


Selectivity

CO2/H2, CO2/CH4

Ref

FAU-type zeolite



3213

298


18, NA

1

Cu-BTC



1600

298


60, 10

2

MOF-5 (IRMOF-1)



2304

296


25, 3

2

SIFSIX-2-Cu-i



735

298


33, 240

3

SIFSIX-3-Zn



250

298


>1800, 231

3

Mg2(dobdc)



1800

313


800, NA

4

Chalcogel (Co, Ni-MoS4)



340

273


16, NA

5

Chalcogel-Pt-1 (PtGeS)



323

273


6, NA

6

Chalcogel-PtSb-1 (PtSbGeSe)



226

273


12, NA

6

Chalcogel (CoMo3S13)



570

273


120, NA

7

KFeSbS3



636

273


217, 60

8

NaFeAsS3



505

273


188, 100

8

CuSb2S4



412

273


67, 22

This work

2LiCl@CuSb2S4

303


273

235, 105


This work

X-ray photoelectron spectroscopy (XPS)

The XPS studies of the powder samples were carried out in a Kratos Axis Ultra DLD spectrometer equipped with a monochromatic Al-Kα x-ray source (hν = 1486.6 eV) operating at 150 W, a multichannel plate and delay line detector under a vacuum of ~10−9 mbar. Measurements were performed in hybrid mode using electrostatic and magnetic lenses, and the take-off angle (angle between the sample surface normal and the electron optical axis of the spectrometer) was 0°. All spectra were recorded using an aperture slot of 300 μm×700 μm. The survey and high-resolution spectra were collected at fixed analyzer pass energies of 160 eV and 20 eV respectively. Samples were mounted in floating mode in order to avoid differential charging. Charge neutralization was required for all samples. Binding energies were referenced to the sp3 hybridized (C-C,C-H) carbon for the C1s set at 285.0 eV.



XPS analysis of the Cu 2p shows lines at 934.4 eV and 954.4 eV which can be assigned to Cu 2p3/2 and Cu 2p1/2 respectively, indicates the presence of Cu(II) species, similarly Sb 3d lines appear at 539.2 eV and 529.3 eV correspond to Sb 3d3/2 and Sb 3d 5/2 respectively. The spectral line for S 2p doublet were observed at 161.4 eV and 162.6 eV that can be assigned to 2p1/2 and 2p3/2 (Figure S15).9-12

c:\users\wadeed\desktop\picture2.tif
Figure S15: High-resolution XPS spectrum of Cu 2p, Sb 3d and S 2p core levels in CuSb2S4.

c:\users\wadeed\desktop\picture1.tif
Figure S16 Adsorption-desorption isotherms of H2 observed at 273 K in unmodified aerogel; a) CuSb2S4 and LiCl-loaded aerogels; b) 1LiCl@CuSb2S4, c) 2LiCl@CuSb2S4.
References:


  1. C. Ducrot-Boisgontier, J. Parmentier, A. Faour, J. Patarin, G. D. Pirngruber, Energy Fuels. 24 (2010) 3595.

  2. (a) Q. Yang and C. Zhong, J. Phys. Chem. B. 110 (2006) 17776. (b) Z. Zhao, Z. Li, Y. S. Lin, Ind. Eng. Chem. Res. 48(2009) 10015.

  3. P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, Nature 495 (2013) 80.

  4. Z. R. Herm, J. A. Swisher, B. Smit, R. Krishna and J. R. Long, J. Am. Chem. Soc. 133 (2011) 5664.

  5. S. Bag, A. F. Gaudette, M. E. Bussell, M. G. Kanatzidis, Nat. Chem. 1 (2009) 217-224.

  6. S. Bag and M. G. Kanatzidis, J. Am. Chem. Soc.132 (2010) 14951.

  7. M. Shafaei-Fallah, A. Rothenberger, A. P. Katsoulidis, J. Q. He, C. D. Malliakas, M. G. Kanatzidis, Adv. Mater. 23 (2011) 4857.

  8. E. Ahmed, J. Khanderi, D. H. Anjum, A. Rothenberger, Chem. Mater. 26 (2014) 6454.

  9. B. Xie, C. C. Finstad, A. J. Muscat, Chem. Mater. 17 (2005) 1753.

  10. K. Uemura, M. Ebihara, Inorg. Chem. 52 (2013) 5535.

  11. NIST Chemistry WebBook.

  12. D. H. Kim, S. J. LeeM. S. ParkJ. K. Kang, J. H. Heo, S. H. Im, S. J. Sung, Nanoscale, 6 (2014) 14549-14554.


Yüklə 79,13 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə