Eilat virus, a unique alphavirus with host range restricted to insects by rna replication



Yüklə 133,99 Kb.
Pdf görüntüsü
tarix20.01.2018
ölçüsü133,99 Kb.
#21770


Eilat virus, a unique alphavirus with host range

restricted to insects by RNA replication

Farooq Nasar

a,1


, Gustavo Palacios

b,1,2


, Rodion V. Gorchakov

a

, Hilda Guzman



a

, Amelia P. Travassos Da Rosa

a

,

Nazir Savji



b,3

, Vsevolod L. Popov

a

, Michael B. Sherman



c

, W. Ian Lipkin

b

, Robert B. Tesh



a

, and Scott C. Weaver

a,c,4

a

Institute for Human Infections and Immunity and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555;



b

Center for Infection

and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032; and

c

Sealy Center for Structural Biology and Molecular Biophysics



and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555

Edited* by Barry J. Beaty, Colorado State University, Fort Collins, CO, and approved July 18, 2012 (received for review March 23, 2012)

Most alphaviruses and many other arboviruses are mosquito-borne

and exhibit a broad host range, infecting many different verte-

brates including birds, rodents, equids, humans, and nonhuman

primates. Consequently, they can be propagated in most verte-

brate and insect cell cultures. This ability of arboviruses to infect

arthropods and vertebrates is usually essential for their mainte-

nance in nature. However, several

flaviviruses have recently been

described that infect mosquitoes but not vertebrates, although the

mechanism of their host restriction has not been determined. Here

we describe a unique alphavirus, Eilat virus (EILV), isolated from

a pool of

Anopheles coustani mosquitoes from the Negev desert

of Israel. Phylogenetic analyses placed EILV as a sister to the West-

ern equine encephalitis antigenic complex within the main clade of

mosquito-borne alphaviruses. Electron microscopy revealed that,

like other alphaviruses, EILV virions were spherical, 70 nm in diameter,

and budded from the plasma membrane of mosquito cells in culture.

EILV readily infected a variety of insect cells with little overt cyto-

pathic effect. However, in contrast to typical mosquito-borne alpha-

viruses, EILV could not infect mammalian or avian cell lines, and viral

as well as RNA replication could not be detected at 37 °C or 28 °C.

Evolutionarily, these

findings suggest that EILV lost its ability to infect

vertebrate cells. Thus, EILV seems to be mosquito-speci

fic and repre-

sents a previously undescribed complex within the genus

Alphavirus.

Reverse genetic studies of EILV may facilitate the discovery of deter-

minants of alphavirus host range that mediate disease emergence.

evolution

|

Togavirus



T

he genus Alphavirus in the family Togaviridae comprises

small, spherical, enveloped viruses with single strand, posi-

tive-sense, 11- to 12-kb RNA genomes that contains two ORFs

(1): the 5

′ two thirds of the genome encodes four nonstructural

proteins (nsPs; nsP1

–nsP4); the 3′ third encodes five structural

proteins (sPs; Capsid, E3, E2, 6K, and E1). Alphaviruses enter

the host cell via receptor-mediated endocytosis. Following in-

ternalization, low endocytic pH induces a conformational change

that exposes an E1 fusion peptide resulting in the cytoplasmic

release of the nucleocapsid. The genomes of alphaviruses are

capped and polyadenylated and serve as mRNA for translation

of the nsPs. The resulting polyprotein is sequentially cleaved into

four nsPs responsible for RNA replication, modi

fication, and

proteolytic cleavage. The nsPs facilitate the synthesis of negative

and positive strands as well as the transcription of subgenomic

mRNA encoding the sPs. Following translation, glycosylated E1/

E2 heterodimers are inserted into the plasma membrane. Capsid

proteins interact with one genomic RNA copy to form nucleo-

capsids, which interact with the cytoplasmic tail of E2 to initiate

virion budding from host cell membranes (1).

The genus Alphavirus currently includes 29 species grouped into

10 complexes based on antigenic and/or genetic similarities (2, 3).

The Barmah Forest, Ndumu, Middelburg, and Semliki Forest

complexes occur almost exclusively in the Old World, whereas the

Venezuelan equine encephalitis (VEE), eastern equine encepha-

litis (EEE), and Trocara complexes comprise New World viruses

(2, 3). The western equine encephalitis (WEE) complex contains

both Old World [Whataroa virus (WHATV), Sindbis virus (SINV)]

and New World [Aura virus (AURAV)] viruses as well as recom-

binant viruses [WEE virus (WEEV), Highlands J, Fort Morgan,

and Buggy Creek] (2

–5). The latter are decedents of an ancient

recombinant virus that obtained nonstructural and capsid genes

from an EEE-like virus and the remaining genes from a Sindbis-

like ancestor (4, 5). Last, the aquatic alphaviruses comprise two

groups, Southern elephant seal virus and salmon pancreas disease

virus (SPDV) (6, 7). SPDV and its subtype sleeping disease virus

are distantly related to all other alphaviruses (7).

Most alphaviruses infect terrestrial vertebrates via mosquito-

borne transmission and thereby exhibit a broad host range (8).

Occasionally, these cycles spill over into humans and domesti-

cated animals to cause disease. Human infections with Old World

viruses such as Ross River virus, chikungunya virus, and SINV are

typically characterized by fever, rash, and polyarthritis, whereas

infections with the New World viruses VEE virus (VEEV), EEE

virus (EEEV), and WEEV can cause fatal encephalitis (8).

Alphaviruses infect a wide range of vertebrate and insect hosts,

including mosquito species encompassing at least six genera as

well as ticks and lice (6, 8

–10). Vertebrate hosts include fish,

equids, birds, amphibians, reptiles, rodents, pigs, humans, and

nonhuman primates (9). Consequently, alphaviruses can be cul-

tured in many vertebrate and insect cell lines (11

–13). In contrast,

the distantly related

fish alphaviruses, which are not known to

have arthropod vectors, exhibit a narrow host range (

fish cells

only) that is at least partially a result of temperature sensitivity

(14


–16). However, the viral factor(s) that underlie the varying

host range of alphaviruses are poorly understood. Host-restricted

alphaviruses that group within the mosquito-borne clade may

provide insights into these factor(s); however, to date, none has

been identi

fied. Here we describe a host-restricted alphavirus

of mosquitoes and demonstrate that its inability to infect verte-

brates is caused at least in part by restricted RNA replication.

Results

Virus Isolation.



Eilat virus (EILV) was one of 91 virus isolates

obtained during an arbovirus survey the Negev desert, including

in the city of Eilat, in Israel, during 1982 to 1984 (17). EILV was

Author contributions: F.N., R.V.G., R.B.T., and S.C.W. designed research; F.N., G.P., R.V.G.,

A.P.T.D.R., N.S., V.L.P., and M.B.S. performed research; F.N., R.V.G., H.G., R.B.T., and S.C.W.

contributed new reagents/analytic tools; F.N., R.V.G., A.P.T.D.R., V.L.P., M.B.S., W.I.L.,

R.B.T., and S.C.W. analyzed data; and F.N. and S.C.W. wrote the paper.

The authors declare no con

flict of interest.

*This Direct Submission article had a prearranged editor.

1

F.N. and G.P. contributed equally to this work.



2

Present address: US Army Medical Research Institute for Infectious Diseases, Fort Detrick,

Frederick, MD 21702.

3

Present address: School of Medicine, New York University, New York, NY 10016.



4

To whom correspondence should be addressed. E-mail: sweaver@utmb.edu.

This article contains supporting information online at

www.pnas.org/lookup/suppl/doi:10.

1073/pnas.1204787109/-/DCSupplemental

.

14622



–14627

|

PNAS



|

September 4, 2012

|

vol. 109


|

no. 36


www.pnas.org/cgi/doi/10.1073/pnas.1204787109


originally isolated in mosquito cells by Joseph Peleg (Hebrew

University, Jerusalem) from a pool of Anopheles coustani mos-

quitoes, and was subsequently sent to one of the authors (R.B.T.)

for further study. Preliminary characterization showed that EILV

was unable to infect mammalian cells or to kill infant mice in-

oculated intracerebrally, but could replicate to high titers in a

variety of insect cells.

Genomic Analysis.

The complete genomic EILV sequence, de-

termined by 454 pyrosequencing, was translated and compared

with that of SINV to determine the length of each gene product;

a schematic illustration is shown in Fig. 1A. The lengths of the

UTRs and intergenic regions, as well as of each gene, were similar

to those of other alphaviruses. Nucleotide and amino acid se-

quence identity of EILV with other alphaviruses ranged from 57%

to 43% and 58% to 28%, respectively (

Dataset S1

). In both anal-

yses, EILV had greater similarity to WHATV, AURAV, SINV,

and Trocara virus (TROV), and had the lowest sequence identity

to SPDV. The EILV nsPs displayed higher amino acid identity to

those of other alphavirus than did the sPs, with nsP4 exhibiting the

highest amino acid identity and nsP3 the least (

Dataset S2

).

Analyses of putative EILV conserved sequence elements (CSEs)



based on mFold estimates indicated that the EILV 5

′ UTR formed

hairpin structures similar to those of SINV, and the nsP1 CSE had

>70% nt sequence identity with AURAV, WHATV, and SINV

(

Fig. S1 A and B



). Like the 5

′ CSE, the EILV nsP1 CSE formed

hairpin structures similar to those of SINV. The EILV subgenomic

promoter shared 88% nt sequence identity with WEEV and EEEV

(

Fig. S1C


), and the 3

′ CSE was almost identical to that of AURAV,

EEEV, VEEV, and SFV (

Fig. S1D


).

Last, the putative EILV nonstructural and structural poly-

protein cleavage sites had greater sequence identity with TROV,

AURAV, WHATV, and SINV (

Fig. S2A

), whereas the E1 fusion

peptide was identical to that of WHATV and shared signi

ficant


sequence identity with SINV, WEEV, EEEV, VEEV, and chi-

kungunya virus (

Fig. S2B

). The ribosomal binding site showed

greater sequence divergence (

Fig. S2B


), but was most similar to

that of AURAV and SINV.

In Vitro Characterization.

An EILV genomic cDNA clone was con-

structed and rescued by electroporation of transcribed RNA. EILV

infection did not cause any overt cytopathic effects on C7/10 cells,

although they grew at a slower rate than uninfected cells. EILV

formed 3- to 4-mm plaques 3 d after infection of C7/10 cells (Fig.

1B). RNA analysis of EILV-infected C7/10 cells revealed the syn-

thesis of genomic as well as subgenomic RNA, characteristic of all

alphaviruses (Fig. 1C).

EM.


Transmission EM and cryoEM imaging of EILV virions

showed that they were spherical, 70 nm in diameter, and budded

from the plasma membrane of mosquito cells (Fig. 2 A and B). A

20-Å-resolution cryoEM reconstruction (Fig. 2A) revealed an

unusual protrusion on the glycoprotein spikes that is absent in

SINV. The observed volume of this protrusion was consistent

with the expected volume of the E3 protein.

Phylogenetic and Serological Analysis.

Neighbor-joining, maximum-

likelihood, and Bayesian methods were used to determine the

relationship of EILV within the genus Alphavirus. Trees were

generated using full-length as well as nonstructural and structural

polyprotein gene nucleotide alignments. All three methods placed

EILV within the clade of mosquito-borne alphaviruses (Fig. 3 and

Figs. S3

and


S4

). The genomic and structural nucleotide analyses

placed EILV as a sister to the WEE complex (Fig. 3 and

Fig. S3


)

with high posterior probability support. Analyses of the non-

structural alignment showed some inconsistency. Neighbor joining

placed EILV as a sister to WEE complex, whereas Bayesian and

maximum-likelihood analyses placed it within the WEE complex

basal to WHATV (

Fig. S4

).

Complement



fixation (CF) and hemagglutination inhibition (HI)

assays were also performed to determine the antigenic relationship

of EILV within the Alphavirus genus. By CF, EILV did not cross

react with sera against most alphaviruses and had only minimal

cross-reactivity with TROV, AURAV, SINV, EEEV, and VEEV

antisera (Fig. 4A). By HI, EILV antiserum cross-reacted minimally

with TROV, SINV, WEEV, and EEEV (Fig. 4B). Puri

fied EILV


did not hemagglutinate, and EILV antiserum reacted non-

speci


fically with mosquito cell antigens, confounding HI results.

Fig. 1.


Schematic diagram of the EILV genome (A).

Amino acid size of each protein is denoted below.

The intergenic region, 5

′ and 3′ UTR nucleotide

lengths are above in gray. EILV plaques 3 d after

infection on C7/10 cells (B). Synthesis of virus-speci

fic

RNAs in C7/10 cells infected with EILV or SINV 7 hpi,



analyzed by agarose gel electrophoresis (C). G, ge-

nomic RNA; SG, subgenomic RNA.

Nasar et al.

PNAS


|

September 4, 2012

|

vol. 109


|

no. 36


|

14623


MICROBIO

LOGY



In Vitro Host Range.

Representative vertebrate and insect cell lines

[Vero (African green monkey), BHK-21 (baby hamster kidney),

HEK-293 (human embryonic kidney), NIH 3T3 (mouse

fibro-

blast), duck embryo



fibroblast (DEF), A6 (Xenopus laevis), Aedes

albopictus (C6/36 and C7/10), Culex tarsalis, and Phlebotomus

papatasi (PP-9)] were used to determine the in vitro host range of

EILV. SINV, which has a broad in vitro host range, was used as

a positive control (12

–14). EILV and SINV infected C. tarsalis,

P. papatasi, C6/36, and C7/10 cells (Fig. 5A and

Fig. S5A


), and

replicated to high titers (

>10

7

pfu/mL) 12 h postinfection (hpi)



with peak titers of 5

× 10


7

to 5


× 10

8

pfu/mL at 48 hpi; however,



the infections did not produce overt cytopathic effects (

Fig. S6


).

All vertebrate cell lines were readily infected by SINV and showed

extensive cytopathic effects at 12 hpi (

Fig. S5B


), whereas EILV

was unable to infect any of the vertebrate cell lines and no cy-

topathic effects were observed (Fig. 5B and

Fig. S6


). The EILV

inocula decayed signi

ficantly by 72 hpi and were barely greater

than the limit of detection at 96 hpi.

The inability of EILV to infect vertebrate cells was con

firmed


by infection with the EILV-expressing red

fluorescent protein

(eRFP) from a second subgenomic promoter. The red

fluores-


cent protein was readily observed in mosquito but not vertebrate

cells (


Fig. S6

). In contrast, the SINV-eGFP control expressed

ef

ficiently in mosquito and vertebrate cells.



Analysis of EILV Genomic RNA Replication in Vertebrate Cells.

To

ascertain whether the EILV host range was limited at the level of



RNA replication, the EILV-eRFP cDNA clone was transcribed

in vitro, and

∼10-μg RNA aliquots were electroporated into

vertebrate and insect cells. EILV-eRFP produced no detectable

RFP expression in vertebrate cells incubated at 37 °C or 28 °C as

long as 4 d after electroporation, whereas it readily replicated in

insect cells 24 hpi (Fig. 6). This lack of replication and resultant

absence of eRFP expression was not a result of inef

ficient elec-

troporation of EILV RNA into the vertebrate cells, as our

electroporation ef

ficiency was ∼35% to 95% with the equivalent

SINV-eGFP replicon (

Fig. S7


).

Discussion

Here we describe a host-restricted alphavirus that groups phylo-

genetically within the mosquito-borne clade. Viruses with similar

host restriction have been described for the family Flaviviridae.

The mosquito-speci

fic flaviviruses can be divided into two distinct

groups. The

first group includes cell fusing agent, Kamiti River

virus, and Culex

flaviviruses, which are distantly related phylo-

genetically to the main branch of mosquito- and tick-borne path-

ogenic vertebrate viruses (19

–21). These viruses likely represent

an ancestral lineage that could only infect invertebrates and

Fig. 2.


Eilat virion morphology determined by cryoEM and transmission EM.

A 20-Å cryoEM reconstruction of EILV glycoprotein spikes on the virion

surface (A). The protrusion possibly representing the E3 protein is high-

lighted in purple. SINV glycoprotein spikes are shown as a comparison (45).

EILV virions are shown budding from the surface of C7/10 cells (B).

Fig. 3.


Bayesian phylogenetic tree based on nucleotide sequences of the alphavirus structural ORF. A midpoint rooted tree is shown with all posterior

probabilities



<1 shown on major branches. Alphavirus complexes are denoted in bold.

14624


|

www.pnas.org/cgi/doi/10.1073/pnas.1204787109

Nasar et al.



subsequently gained the ability to infect vertebrates. It is probable

that genus Alphavirus also contains additional yet-undiscovered

host-restricted alphaviruses comprising a similarly outlying lineage.

The second

flavivirus group includes the newly identified Nounané

virus (NOUV) and Lammi virus (LAMV), which are closely re-

lated to the mosquito-borne pathogens such as dengue fever, yel-

low fever, and West Nile virus (22, 23). NOUV and LAMV, like

EILV, replicate in insect cells but not in mammalian or avian cells

(22, 23). The phylogenetic placement of these

flaviviruses as well as

EILV within the mosquito-borne clades of their respective genera

suggests that they have lost the ability to infect vertebrate cells or

that the mosquito-borne viruses independently and convergently

regained the ability to infect vertebrates on multiple occasions. The

most parsimonious explanation, which requires the fewest host

range changes, is that EILV and the ancestral parent of NOUV

and LAMV lost their ability to infect vertebrate cells.

The factors that determine the broad host range of alphaviruses

are poorly understood. Available data suggest that mutations in

the CSEs or glycoproteins can alter host range (24

–33). However,

these mutations result in change in

fitness in vertebrate or insect

host but do not completely abolish replication. Alphavirus host

range can be restricted, at least in part, by temperature. SINV can

be cultured to high titers from 15 °C to 40 °C, suggesting a wide

permissive temperature range (24, 34), whereas the distantly re-

lated aquatic SPDV appears to have a very narrow temperature

range of 10 °C to 15 °C (16). Our genetic analysis of EILV CSEs

and other key elements could not explain its observed host range

restriction, as they showed no major differences compared with

mosquito-borne alphaviruses. There are several possible steps at

which the EILV host restriction could occur: (i) attachment and

entry, (ii) incompatibility with host cell factors, or (iii) tempera-

ture sensitivity. We generated strong evidence for the second

hypothesis, as we were unable to detect eRFP expression in ver-

tebrate cell lines incubated at 37 °C or 28 °C, indicating that the

EILV replication was unable to express subgenomic mRNA and

is likely not temperature-sensitive. Our results suggest that EILV

RNA replication is restricted by improper interactions between

its RNA or gene products with vertebrate cell cofactors. Addi-

tionally, the

first hypothesis could also represent redundant

blocks to vertebrate cell infection; further studies are under way

to assess the ability of EILV to enter cells. The EILV viral genes

or RNA elements potentially responsible for the host restriction

are also currently under investigation.

Our in vitro characterization EILV showed no overt cytopathic

effects in insect cells. However, a reduction in the growth of in-

fected cells was observed, which facilitated the development of

a plaque assay. EILV virions, similar to other alphaviruses, were

spherical in shape, 70 nm in diameter, and budded from the

plasma membrane. A protrusion was observed in the glycoprotein

spikes of EILV that appeared to correspond to the E3 protein.

Semliki Forest virus and VEEV are also reported to incorporate

E3 into virions (35, 36). We are attempting to produce higher-

resolution EILV cryoEM maps to con

firm this interpretation.

Fig. 4.


Complement

fixation (A) and Hemagglutination inhibition (B)

tests with EILV and other alphavirus antigens and hyperimmune mouse

ascitic


fluids (MIAF). Asterisk indicates the reciprocal of heterologous titer

(Ht)/reciprocal of homologous titer (Ho).

Fig. 5.

Replication kinetics of EILV on representative insect (gray, 28 °C) (A) and vertebrate (black, 37 °C) (B) cell lines. Monolayers were infected at an MOI



of 10 (measured in mosquito cells). Supernatants were collected at indicated intervals postinfection and titrated on C7/10 cell monolayers. Each data point

represents the mean titer of samples taken from triplicate infections

± SD. A6 cells were incubated at 28 °C.

Nasar et al.

PNAS

|

September 4, 2012



|

vol. 109


|

no. 36


|

14625


MICROBIO

LOGY



EILV expressed genomic and subgenomic RNA species sim-

ilar in size to those of SINV. However, the EILV subgenomic

RNA expression level in mosquito cells was lower than that of

SINV. One possible explanation is that the EILV labeling was

not performed at the appropriate time to visualize greater sub-

genomic RNA levels. Another possible explanation is that EILV

packages subgenomic RNA like another alphavirus, AURAV

(37). Finally, EILV may possess a more ef

ficient mechanism of

virion assembly. The latter possibility has been suggested for

other alphaviruses (38).

The phylogenetic analyses placed EILV within the clade of

mosquito-borne alphaviruses. Analyses based on concatenated

nsP/sP ORFs, as well as the sP ORF, consistently placed EILV

at the base of WEE complex with strong support. However, the

nsP ORF alone placed EILV within the WEE complex basal to

WHATV. We believe the concatenated, full-length genome anal-

ysis provides the most accurate placement of EILV within the

genus, as it is based on both ORFs containing more informative

characters. Our analysis also suggests that EILV is not the de-

scendent of a major recombination event like WEEV and others,

as its placement did not change signi

ficantly with nsP or sP ORF

analyses. Additionally, the placement of EILV within the genus

did not alter previously determined relationships within the genus

(3). Our serological analysis showed minimal cross-reactions with

other alphaviruses (mainly TROV, AURAV, and SINV). These

data suggest a distant relationship between EILV and these

viruses, consistent with the phylogenetic placements. The latter

was also supported by the genetic analysis of EILV that revealed

considerable divergence relative to other alphaviruses, both at the

nucleotide (43%

–57%) and amino acid (32%–78%) levels. The

results of these analyses indicate that EILV represents a pre-

viously undescribed complex within the genus Alphavirus.

The discovery of EILV was fortuitous, as it does not produce

overt cytopathic effects in vertebrate or insect cells and does not

kill infant mice. In the initial isolation, extensive cytopathic

effects were observed in insect cells. However, deep sequencing

revealed the presence of two unique viruses. The second virus,

designated Negev virus, will be described in another publication.

Negev virus was responsible for the observed cytopathic effects

and replicated to higher titers in mosquito cells than EILV; only

after generation of a cDNA clone could EILV be isolated. This

serendipitous discovery of EILV thus highlights the value of

large-scale molecular screening techniques to identify new viru-

ses. It also underscores our limited knowledge of the mosquito

virome and the likelihood that other viruses like EILV are

present in other families or genera of arthropod-borne viruses.

Finally, EILV provides a unique opportunity to study the evo-

lution and molecular determinants of alphavirus host range, and,

more importantly, the fundamental factors that underlie their

pathogenesis in animals and humans. Additionally, EILV may also

be useful to genetically engineer alphavirus chimeras as a vaccine

platform or to express foreign genes in mosquitoes with the po-

tential to render them refractory to pathogen transmission.

Materials and Methods

Viruses and Cells. EILV and SINV (Eg 339) as well as C. tarsalis and P. papatasi

cells were obtained from the World Reference Center for Emerging Viruses

and Arboviruses at the University of Texas Medical Branch. Both viruses were

ampli

fied on C7/10 cells and stored at −80 °C. BHK-21, HEK-293, duck em-



bryo

fibroblast, NIH 3T3, A6, and C6/36 cell lines were obtained from the

American Type Culture Collection. Cell lines were propagated at 37 °C or 28 °C

with 5% CO

2

in DMEM containing 10% (vol/vol) FBS, sodium pyruvate (1 mM),



and penicillin (100 U/mL)

–streptomycin (100 μg/mL). C6/36, C7/10, and C. tar-

salis media were additionally supplemented with 1% (vol/vol) tryptose phos-

phate broth (Sigma). P. papatasi cells were maintained in Schneider media

(Sigma) supplemented with 10% (vol/vol) FBS and penicillin (100 U/mL)

streptomycin (100



μg/mL).

Genomic Sequencing, Cloning, and Rescue of Full-Length Infectious EILV Clone.

EILV genome was sequenced by 454 sequencing as described previously

(3). The EILV cDNA clone was constructed by using standard molecular

techniques (38).

Fig. 6.


Replication of EILV genomic RNA in vertebrate (37 °C) and insect (28 °C) cell lines. RNA was transcribed in vitro from the cDNA clone and

∼10-μg aliquots

of RNA were electroporated into vertebrate and insect cells. Phase-contrast and

fluorescent field photographs were taken at day 4 after electroporation.

14626

|

www.pnas.org/cgi/doi/10.1073/pnas.1204787109



Nasar et al.


Phylogenetic Analysis. Phylogenetic analyses were performed as previously

described (3). Alphavirus sequences were downloaded from GenBank

(

Dataset S3



lists accession numbers). The two ORFs were concatenated; the

C terminus of nsP3 and the N terminus of the capsid genes, which cannot

be reliably aligned, were removed; and the complete alignment was split

into nsP and sP ORFs. E2-6k-E1 sequence was used for structural ORF

analysis. Three analyses were performed: neighbor-joining, maximum-

likelihood, and Bayesian. The robustness of the neighbor-joining phylog-

eny was evaluated by bootstrap resampling with 1,000 replicates. Mod-

eltest in PAUP was used to identify the best-

fit nucleotide substitution

model, GTR+I+G (39). The robustness of maximum-likelihood and Bayesian

phylogenies was evaluated by bootstrap resampling of 100 and 5 million

generations, respectively.

Serologic Tests. CF and HI tests were performed as described previously (40).

Transmission EM. Thin-section and cryoEM were performed as described

previously (41

–43).


RNA Analysis. C7/10 monolayers were infected with SINV or EILV at a multi-

plicity of infection (MOI) of 10; 4 h postinfection cells were labeled with [

3

H]

uridine (20



μCi/mL) in the presence of dactinomycin (1 μg/mL) for 3 h. RNA

was analyzed by agarose gel electrophoresis as described previously (44).

Plaque Assay. Virus titration was performed on freshly con

fluent C7/10 cell

monolayers in six-well plates. Duplicate wells were infected with 0.1-mL

aliquots from serial 10-fold dilutions in growth medium, 0.4 mL of growth

media was added to each well to prevent cell desiccation, and virus was

adsorbed for 2 h. Following incubation, the inoculum was removed, and

monolayers were overlaid with 3 mL containing a 1:1 mixture of 2% trag-

acanth and 2

× MEM with 10% (vol/vol) FBS, 2% tryptose phosphate broth

solution, and 2% (vol/vol) penicillin/streptomycin. Cells were incubated at

28 °C in 5% CO

2

for 3 d for plaque development, the overlay was removed,



and monolayers were

fixed with 10% formaldehyde. Cells were stained with

0.2% (wt/vol) crystal violet in 30% methanol and plaques were counted.

One-Step Replication Curves. Replication curves were performed on repre-

sentative cell lines in triplicate with an MOI of 10 (EILV titered on mosquito

cells only). Virus was adsorbed to 50% con

fluent cells for 2 h at 37 °C (ver-

tebrate) or 28 °C (insect and A6). After the inoculum was removed, mono-

layers were rinsed

five times with PBS solution to remove unbound virus,

and 5 mL of growth medium was added to each

flask. Aliquots of 0.5 mL

were taken immediately afterward as a

“time 0” sample and replaced with

0.5 mL of fresh medium. Flasks were incubated at 37 °C or 28 °C, and further

samples were taken at 12, 24, 48, 72, and 96 hpi.

ACKNOWLEDGMENTS. The authors thank Dr. Frederick A. Murphy for help

in interpreting the electromicrographs, Amy Schuh and Dr. Naomi Forrester

for their helpful discussions on phylogenetics, and Drs. Andrew Haddow and

Konstantin Tsetsarkin for their helpful discussions in manuscript prepara-

tion. This work was supported by National Institutes of Health Contract

HHSN272201000040I/HHSN27200004/D04 (to R.B.T.).

1. Kuhn RJ (2007) Togaviridae: The viruses and their replication. Fields Virology, eds

Knipe DM, Howley PM (Lippincott Williams and Wilkins, Baltimore), 5th ed, pp

1001

–1022.


2. Powers AM, et al. (2001) Evolutionary relationships and systematics of the alphavi-

ruses. J Virol 75:10118

–10131.

3. Forrester NL, et al. (2012) Genome-scale phylogeny of the alphavirus genus suggests



a marine origin. J Virol 86:2729

–2738.


4. Hahn CS, Lustig S, Strauss EG, Strauss JH (1988) Western equine encephalitis virus is

a recombinant virus. Proc Natl Acad Sci USA 85:5997

–6001.

5. Weaver SC, et al. (1997) Recombinational history and molecular evolution of western



equine encephalomyelitis complex alphaviruses. J Virol 71:613

–623.


6. La Linn M, et al. (2001) Arbovirus of marine mammals: A new alphavirus isolated from

the elephant seal louse, Lepidophthirus macrorhini. J Virol 75:4103

–4109.

7. Weston J, et al. (2002) Comparison of two aquatic alphaviruses, salmon pancreas



disease virus and sleeping disease virus, by using genome sequence analysis, mono-

clonal reactivity, and cross-infection. J Virol 76:6155

–6163.

8. Strauss JH, Strauss EG (1994) The alphaviruses: Gene expression, replication, and



evolution. Microbiol Rev 58:491

–562.


9. Grif

fin DE (2007) Alphaviruses. Fields Virology, eds Knipe DM, Howley PM (Lippincott

Williams and Wilkins, Baltimore), 5th ed, pp 1023

–1068.


10. Linthicum KJ, et al. (1991) Venezuelan equine encephalomyelitis virus infection in and

transmission by the tick Amblyomma cajennense (Arachnida: Ixodidae). J Med En-

tomol 28:405

–409.


11. Way JH, Bowen ET, Platt GS (1976) Comparative studies of some African arboviruses in

cell culture and in mice. J Gen Virol 30:123

–130.

12. Sarver N, Stollar V (1977) Sindbis virus-induced cytopathic effect in clones of Aedes



albopictus (Singh) cells. Virology 80:390

–400.


13. Igarashi A (1978) Isolation of a Singh

’s Aedes albopictus cell clone sensitive to Dengue

and Chikungunya viruses. J Gen Virol 40:531

–544.


14. Weston JH, Welsh MD, McLoughlin MF, Todd D (1999) Salmon pancreas disease virus,

an alphavirus infecting farmed Atlantic salmon, Salmo salar L. Virology 256:188

–195.

15. Villoing S, Béarzotti M, Chilmonczyk S, Castric J, Brémont M (2000) Rainbow trout



sleeping disease virus is an atypical alphavirus. J Virol 74:173

–183.


16. Graham DA, Wilson C, Jewhurst H, Rowley H (2008) Cultural characteristics of sal-

monid alphaviruses

—influence of cell line and temperature. J Fish Dis 31:859–868.

17. Samina I, Margalit J, Peleg J (1986) Isolation of viruses from mosquitoes of the Negev,

Israel. Trans R Soc Trop Med Hyg 80:471

–472.


18. Rice CM, Levis R, Strauss JH, Huang HV (1987) Production of infectious RNA transcripts from

Sindbis virus cDNA clones: Mapping of lethal mutations, rescue of a temperature-sensitive

marker, and in vitro mutagenesis to generate de

fined mutants. J Virol 61:3809–3819.

19. Stollar V, Thomas VL (1975) An agent in the Aedes aegypti cell line (Peleg) which

causes fusion of Aedes albopictus cells. Virology 64:367

–377.

20. Crabtree MB, Sang RC, Stollar V, Dunster LM, Miller BR (2003) Genetic and phenotypic



characterization of the newly described insect

flavivirus, Kamiti River virus. Arch Virol

148:1095

–1118.


21. Hoshino K, et al. (2007) Genetic characterization of a new insect

flavivirus isolated

from Culex pipiens mosquito in Japan. Virology 359:405

–414.


22. Junglen S, et al. (2009) A new

flavivirus and a new vector: characterization of a novel

flavivirus isolated from uranotaenia mosquitoes from a tropical rain forest. J Virol 83:

4462


–4468.

23. Huhtamo E, et al. (2009) Characterization of a novel

flavivirus from mosquitoes in

northern Europe that is related to mosquito-borne

flaviviruses of the tropics. J Virol

83:9532


–9540.

24. Niesters HG, Strauss JH (1990) De

fined mutations in the 5′ nontranslated sequence of

Sindbis virus RNA. J Virol 64:4162

–4168.

25. Niesters HG, Strauss JH (1990) Mutagenesis of the conserved 51-nucleotide region of



Sindbis virus. J Virol 64:1639

–1647.


26. Kuhn RJ, Grif

fin DE, Zhang H, Niesters HG, Strauss JH (1992) Attenuation of Sindbis

virus neurovirulence by using de

fined mutations in nontranslated regions of the

genome RNA. J Virol 66:7121

–7127.


27. Heil ML, Albee A, Strauss JH, Kuhn RJ (2001) An amino acid substitution in the coding

region of the E2 glycoprotein adapts Ross River virus to utilize heparan sulfate as an

attachment moiety. J Virol 75:6303

–6309.


28. Heidner HW, Knott TA, Johnston RE (1996) Differential processing of Sindbis virus

glycoprotein PE2 in cultured vertebrate and arthropod cells. J Virol 70:2069

–2073.

29. Hernandez R, et al. (2003) Deletions in the transmembrane domain of a Sindbis virus



glycoprotein alter virus infectivity, stability, and host range. J Virol 77:12710

–12719.


30. Hernandez R, Ferreira D, Sinodis C, Litton K, Brown DT (2005) Single amino acid in-

sertions at the junction of the Sindbis virus E2 transmembrane domain and endo-

domain disrupt virus envelopment and alter infectivity. J Virol 79:7682

–7697.


31. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S (2007) A single mutation in

Chikungunya virus affects vector speci

ficity and epidemic potential. PLoS Pathog 3:

e201.


32. Brault AC, et al. (2004) Venezuelan equine encephalitis emergence: Enhanced vector

infection from a single amino acid substitution in the envelope glycoprotein. Proc

Natl Acad Sci USA 101:11344

–11349.


33. Anishchenko M, et al. (2006) Venezuelan encephalitis emergence mediated by

a phylogenetically predicted viral mutation. Proc Natl Acad Sci USA 103:4994

–4999.

34. Peleg J, Pecht M (1978) Adaptation of an Aedes aegypti mosquito cell line to growth



at 15 degrees C and its response to infection by Sindbis virus. J Gen Virol 38:231

–239.


35. Mancini EJ, Clarke M, Gowen BE, Rutten T, Fuller SD (2000) Cryo-electron microscopy

reveals the functional organization of an enveloped virus, Semliki Forest virus. Mol

Cell 5:255

–266.


36. Zhang R, et al. (2011) 4.4 Å cryo-EM structure of an enveloped alphavirus Venezuelan

equine encephalitis virus. EMBO J 30:3854

–3863.

37. Rümenapf T, Strauss EG, Strauss JH (1994) Subgenomic mRNA of Aura alphavirus is



packaged into virions. J Virol 68:56

–62.


38. Volkova E, et al. (2006) The ef

ficient packaging of Venezuelan equine encephalitis

virus-speci

fic RNAs into viral particles is determined by nsP1-3 synthesis. Virology 344:

315

–327.


39. Swofford DL (1998) PAUP*: Phylogenetic Analysis Using Parsimony (*and Other

Methods), Version 4 (Sinauer, Sunderland, MA).

40. Beaty BJ, et al. (1989) Arboviruses. Diagnostic Procedures for Viral, Rickettsial and

Chlamydial Infections, eds Schmidt NJ, Emmons RW (American Public Health Associ-

ation, Washington, DC), 6th Ed, pp 797

–855.


41. Ito S, et al. (1981) Techniques for Electron Microscopy of Rickettsiae, eds Burgdorfer W,

Anacker RL (Academic, San Diego), pp 213

–227.

42. Travassos da Rosa AP, et al. (2001) Trocara virus: A newly recognized Alphavirus



(Togaviridae) isolated from mosquitoes in the Amazon Basin. Am J Trop Med Hyg 64:

93

–97.



43. Sherman MB, Weaver SC (2010) Structure of the recombinant alphavirus Western

equine encephalitis virus revealed by cryoelectron microscopy. J Virol 84:9775

–9782.

44. Gorchakov R, Hardy R, Rice CM, Frolov I (2004) Selection of functional 5



′ cis-acting

elements promoting ef

ficient Sindbis virus genome replication. J Virol 78:61–75.

45. Zhang W, et al. (2002) Placement of the structural proteins in Sindbis virus. J Virol 76:

11645

–11658.


Nasar et al.

PNAS


|

September 4, 2012

|

vol. 109


|

no. 36


|

14627


MICROBIO

LOGY

Yüklə 133,99 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə