Günter Blobel: Pioneer of molecular cell biology (1936–2018)



Yüklə 72,79 Kb.
Pdf görüntüsü
tarix05.06.2018
ölçüsü72,79 Kb.
#47564


IN MEMORIAM

https://doi.org/10.1083/jcb.201803048

1

J. Cell Biol. 2018



Rockefeller University Press

Günter Blobel was a scientific colossus who dedicated his career to understanding the mechanisms for protein sorting to 

membrane organelles. His monumental contributions established research paradigms for major arenas of molecular cell 

biology. For this work, he received many accolades, including the Nobel Prize in Medicine or Physiology in 1999. He was a 

scientist of extreme passion and a nurturing mentor for generations of researchers, imbuing them with his deep love of cell 

biology and galvanizing them to continue his scientific legacy. Günter passed away on February 18, 2018, at the age of 81.

Rockefeller University Press

Günter was a 

Lebenskünstler—a master of the art of living. He 

had a tremendous presence; when he walked into a room, he 

couldn’t help but command attention. A towering man, with a 

flock of white hair and a jovial nature, he loved to tell stories: of 

experiences in the laboratory, of life in New York, and of his time 

growing up in Germany. Günter was born in 1936, as the son of 

a veterinarian. He considered his early childhood to be idyllic, 

raised with his seven siblings in a rural and remote part of Silesia, 

then in the eastern part of Germany. There, largely isolated from 

the horrific developments overtaking Europe, Günter recalled 

long afternoons in beautiful manor houses adorned with hunting 

trophies, winter days of sleighing, and summer days in horse-

drawn carriages. However, this life was shattered during the final 

months of the Second World War, when he and his family were 

forced to flee the advancing Soviet army. Passing through Dres-

den at this chaotic time, Günter experienced two life-changing 

events: seeing for the first time the magnificent baroque splen-

dor of this “great jewel of a city,” and days later, witnessing its 

leveling by Allied firebombing. The family picked up the threads 

of their former lives in Freiberg, a medieval town located to the 

west of Dresden. Again, Günter has fond recollections of his time 

there. He immersed himself in the town’s rich cultural legacy, 

centered around baroque and classical music performances in its 

Gothic cathedral. Unfortunately, the new communist regime of 

East Germany was inhospitable to the Blobel family, who were 

seen as part of the bourgeois class and were therefore denied 

access to higher education. Forced to leave Freiberg by these 

circumstances, Günter moved to Tübingen in West Germany to 

study medicine. Though he completed an MD degree, he was not 

inspired to become a practicing physician. Instead, he decided to 

try a career in research science.

Accordingly, Günter joined the laboratory of Van Potter at the 

University of Wisconsin to obtain a PhD. As a graduate student, he 

developed an interest in cell structure and function, and became 

engaged with a problem that subsequently became an obsession: 

how the cell sorts secretory proteins to the rough ER. To pursue 

these interests, he moved to the laboratory of George Palade at 

the Rockefeller University for postdoctoral studies. Günter’s time 

with Palade was a critical and formative experience, as the Palade 

laboratory was an intellectual epicenter for study of the ER. Pal-

ade and coworkers had described the secretory pathway during 

the 1960s in an exquisite series of studies that combined cell 

fractionation, biochemistry, and electron microscopy. Indeed, 

this and related work on the functions of membrane organelles 

earned Palade, Christian De Duve, and Albert Claude the Nobel 

Günter Blobel: Pioneer of molecular cell biology 

(1936–2018)

Blobel Laboratory Trainees

© 2018 Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months 

after the publication date (see 

http:// www .rupress .org/ terms/ 

). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 

4.0 International license, as described at 

https:// creativecommons .org/ licenses/ by -nc -sa/ 4 .0/ 

).

Correspondence to John D. Aitchison: 



jaitchison@ systemsbiology .org

; Larry Gerace: 

lgerace@ scripps .edu

; Michael P. Rout: 

rout@ rockefeller .edu

. 

Günter Blobel.



on June 4, 2018

jcb.rupress.org 

Downloaded from 

http://doi.org/10.1083/jcb.201803048

Published Online: 21 March, 2018 | Supp Info: 



 

Günter Blobel: 1936–2018

Journal of Cell Biology

https://doi.org/10.1083/jcb.201803048

2

Prize in Medicine or Physiology in 1974. Günter revered Palade, 



and used his mentor’s work and conceptualization of cell func-

tion as a touchstone throughout his career.

As a newly promoted faculty member at the Rockefeller Uni-

versity, Günter set out to address the question of how mRNAs that 

encode secretory proteins are selected for synthesis on the rough 

ER. Despite a lack of experimental evidence, in 1971, Günter and 

David Sabatini proposed an amazingly prescient hypothesis (

1

). 



They suggested that ER targeting of secretory proteins is spec-

ified by the presence of a signal peptide on the N terminus of 

proteins destined to be translocated into the ER. This concept was 

subsequently termed the “signal hypothesis” (

2

). ‘‘At first it was 



just a wonderful idea,” Günter remembered; “It was quite a bold 

thing to say because nothing hinted at a signal sequence. But it 

was by far the best thing we could come up with.”

Inspired by his work with Palade, Günter knew that only a 

complete in vitro reconstitution of the ER translocation process 

with purified components—a Herculean challenge at the time—

could validate this hypothesis. Encouraged by studies from sev-

eral laboratories suggesting that the IgG light chain might be 

synthesized as a precursor polypeptide larger than the secreted 

form (1972–1975), he worked intensively to develop methods to 

biochemically dissect the process of ER secretory protein trans-

location. He provided the first strong experimental support for 

the signal hypothesis in two landmark papers in 1975 (

2



3

). As 


with many of his most remarkable discoveries, these were pub-

lished in the 

Journal of Cell Biology. By analyzing IgG light chain 

synthesis using in vitro assays with isolated ER membranes, he 

obtained striking evidence for the presence of an N-terminal sig-

nal sequence on the nascent chains that was involved in cotrans-

lational translocation across the ER membrane, and that was 

cotranslationally removed (

Fig. 1

). He predicted that the signal 



sequence communicated with specific receptor proteins to medi-

ate ER attachment of ribosomes and induce transient assembly 

of a proteinaceous channel to conduct the nascent polypeptide 

across the ER membrane. He also proposed that the mechanisms 

and components involved in secretory protein translocation 

could be used for the insertion of membrane proteins into the 

ER. These ideas were controversial, particularly the notion that 

a proteinaceous channel was involved in signal sequence–medi-

ated membrane translocation, and became the focus of heated 

scientific debates for the subsequent two decades. But, as was 

typical of Günter’s outlook on science, he was unfazed: “I thought 

my ideas were reasonable. So why not propose them?”

Indeed, the controversies surrounding the signal hypothesis 

were laid to rest, one by one, by a series of elegant papers from the 

Blobel laboratory and from others over the next two decades. This 

work identified a cytosolic ribonucleoprotein particle (termed 

the SRP) that interacts with the signal sequence, a specific SRP 

receptor in the ER membrane involved in ribosome targeting, a 

signal peptidase that cotranslationally removes the signal pep-

tide, and, finally, the proteinaceous channel (Sec61 complex) that 

mediates movement of the nascent chain across the membrane 

(

4



). The evolutionary significance of signal-mediated protein 

translocation across the ER was resoundingly underscored by 

the identification of conserved systems in diverse organisms 

including yeast and bacteria. The experimental approach used by 

Günter and associates for these studies, involving the use of an in 

vitro assay with a quantitative functional output for mechanistic 

analysis by fractionation and reconstitution, helped usher in the 

era of modern molecular cell biology.

With the first experimental evidence for the signal hypothesis 

in hand, Günter prophetically speculated that systems analogous 

to those for ER translocation also might be deployed for targeting 

proteins to other membrane organelles (

2

). These speculations 



were decisively borne out in subsequent studies on protein trans-

port into the mitochondrion, the chloroplast, the peroxisome, 

and the nucleus (

Fig. 2


), providing the ultimate vindication for 

these bold conjectures. This was a major element of Günter’s 

principle of “protein topogenesis”: that information for sorting 

Figure 1. The original signal hypothesis 

(adapted from reference 

2

). (A) Illustration of 



the essential features of the signal hypothesis for 

the transfer of proteins across membranes. Sig-

nal codons after the initiation codon AUG are indi-

cated by a zigzag region in the mRNA. The signal 

sequence region of the nascent chain is indicated 

by a dashed line. Endoproteolytic removal of the 

signal sequence is indicated by the presence of 

signal peptides (indicated by short dashed lines). 

(B) Model for the formation of a transient pro-

teinaceous tunnel in the membrane through 

which the nascent chain is transferred.



 

Günter Blobel: 1936–2018

Journal of Cell Biology

https://doi.org/10.1083/jcb.201803048

3

of proteins to different membrane compartments, as well as for 



integration into membranes, is encoded in discrete classes of 

“topogenic” sequences recognized by various receptor systems, 

membrane-spanning protein conduits, and other effectors (

5

).



Propelled by his polymathic character, Günter brought his 

enthusiasm and brilliance to bear on several other areas, particu-

larly nucleocytoplasmic transport and the nuclear lamina. In the 

mid-1970s, Günter and coworkers made the remarkable discov-

ery that nuclear pore complexes (NPCs) remain as intact struc-

tures after detergent extraction of nuclear envelopes, attached to 

a proteinaceous “nuclear lamina” derived from the inner surface 

of the nuclear envelope (

Fig. 3, A and B

6



7

). These results sug-



gested that NPCs could be isolated and biochemically analyzed, 

a goal that was realized many years later by trainees from his 

laboratory. Günter enthusiastically promoted the view that the 

nuclear lamina is a widespread nuclear structural component of 

fundamental importance, albeit not evident in most cells by elec-

tron microscopy. These results initiated a stream of biochemical 

and functional studies that gradually became an experimental 

torrent involving numerous laboratories. This effort has firmly 

established the importance of the lamina in myriad nuclear 

functions in higher eukaryotes, including nuclear mechanics, 

signaling, and the dynamic 3D functional organization of chro-

matin. The relatively recent discoveries linking mutations in 

nuclear lamina proteins to at least 15 human genetic disorders 

speak to Günter’s visionary intuition on the importance of the 

nuclear lamina.

In the arena of nucleocytoplasmic transport. Günter’s group 

was a frontrunner in the identification of nuclear transport fac-

tor proteins and NPC components, his competitive fervor help-

ing to propel the field forward at an astounding rate during the 

1990s. More recently, in keeping with his desire to understand 

the mechanistic principles of cells and fascinated by the molec-

ular architecture of these players, he retailored his laboratory 

to solve the atomic structures for some of the proteins compris-

ing these assemblies (

Fig. 3 C

). He drew great joy from solving 

molecular structures, seeing in them an elegance akin to that 

found in great architectural masterpieces, and he was adept in 

Figure 3. The nuclear envelope, and associated structures. (A and B) Transmission electron micrographs of a thin section through an NPC–lamina frac-

tion isolated from rodent liver, showing NPCs in lateral (single arrow) and frontal (double arrow) views, and the associated nuclear lamina (lA). Bars, 100 nm 

(adapted from reference 

7

). (C) An example of one of the most recent structures from the Blobel laboratory (PDB: 



5SUP

): the messenger ribonucleoprotein 

particles remodeling complex of Sub2 associated with an ATP analogue, RNA, and a C-terminal fragment of Yra1, required to process and package messenger 

ribonucleoprotein particles before export through the NPC.

Figure 2. The principles of protein targeting 

directed by signal sequences. A schematic of 

a cell is shown, with different membrane-bound 

organelles illustrated and labeled. Newly synthe-

sized proteins carry signal sequences, often but 

not always at one end of the protein, which can 

direct that protein to the correct organelle within 

the cell and allow them to cross the organellar 

membranes. The lower right inset depicts how 

additional classes of topogenic sequences (

5



can specify the membrane integration of proteins 



(brown shading) instead of simple membrane 

translocation with signal sequence cleavage 

(orange shading).



 

Günter Blobel: 1936–2018

Journal of Cell Biology

https://doi.org/10.1083/jcb.201803048

4

interpreting them in the context of cellular functions. Often he 



would retreat to his office for days, poring over stacks of litera-

ture and drawing on his experiences, to interpret their mecha-

nisms and dynamics, ultimately explaining them with flamboy-

ant imagery that reflected his love of cell biology.

Günter felt that doing science is a privilege and that it unifies 

humanity. He espoused da Vinci’s belief that “the noblest plea-

sure is the joy of understanding.” His enthusiasm was infectious 

and his laboratory was a hotbed of exciting ideas and around-

the-clock activity. Sometimes the exciting ideas did not survive 

rigorous experimental scrutiny. But Günter was not afraid to 

miss the mark. Those who knew him well also knew how passion-

ate he could become when a concept seemed particularly appeal-

ing. However, as he himself acknowledged, it sometimes became 

clear that (paraphrasing Thomas Huxley) “there are beautiful 

hypotheses killed by ugly facts.” He fully embraced this facet of 

scientific research, further stating that “one must not be wed to 

one’s fantasies.”

As trainees, it was a pleasure and privilege for us to be part of 

his life and to have been influenced by this extraordinary man. 

We started our careers on the fertile ground tilled by our time in 

Günter’s laboratory. He inspired us to think big and to ask the 

questions in biology that really mattered. Günter viewed his lab-

oratory as the greatest of master artists viewed their studios, just 

as these studios apprenticed new artists while the paintings were 

produced, Günter sought both to produce new scientific discov-

eries and to train new scientific researchers. Only last year, five 

of Günter’s postdoctoral researchers and senior fellows gained 

assistant professor tenure track positions. His office door was 

always open to his trainees, past and present. They knew they 

could go in, even if defeated and distraught after long strings of 

failures, thrash through the issues, work with him on new ways 

of tackling them, and emerge reinvigorated.

Günter’s passions extended beyond the scientific. The sim-

plest of things could ignite an exuberant outpouring. A walk 

with his dogs through Central Park, the flowers in the garden at 

the Rockefeller University, or an evening at his favorite haunt, 

Barbetta Restaurant. This sentiment and joie de vivre belied 

an intensely competitive spirit, but at heart Günter was a kind 

gentleman who was enormously generous. Spurred by his child-

hood experiences, he became the founder and president of the 

nonprofit organization Friends of Dresden. Indeed, he donated 

his Nobel Prize money to Dresden, devoted to the rebuilding of 

the Frauenkirche—a Lutheran church and baroque architectural 

masterpiece—and the New Synagogue, to replace the synagogue 

destroyed by the Nazis.

With deep sadness, we accept that eventually Günter grace-

fully succumbed to the self-described “noble injuries of time,” 

maintaining his enthusiasm until the end. There is so much 

more we could say about this incredibly inspiring man; we feel 

we got to know him well (

Fig. 4

). But, as Günter himself often 



liked to say, “less is more.” For his memorial, one can view the 

architectural splendors in Dresden reborn through his efforts, 

his towering masterpieces of scientific insight that underlie 

countless medical therapies and treatments being pioneered 

today, and the generations of researchers inspired by him who 

are continuing his work and who are passing on his baton to the 

next generations.

Figure 4. Blobel laboratory trainees were polled 

for up to five one-word descriptors they have used 

to describe Günter to their friends, family, and col-

leagues.  Responses are shown in word cloud format 

produced using software from WordArt.com. The size of 

each word reflects its frequency of usage.



 

Günter Blobel: 1936–2018

Journal of Cell Biology

https://doi.org/10.1083/jcb.201803048

5

Submitted: 9 March 2018



Accepted: 9 March 2018

References

1. Blobel, G., and D.D. Sabatini. 1971. Ribosome-membrane interaction in 

eukaryotic cells. 

In Biomembranes. L.A. Manson, editor. Springer, Bos-

ton, MA. 193–195. 

https:// doi .org/ 10 .1007/ 978 -1 -4684 -3330 -2 _16

2. Blobel, G., and B. Dobberstein. 1975. Transfer of proteins across membranes. 

I. Presence of proteolytically processed and unprocessed nascent immu-

noglobulin light chains on membrane-bound ribosomes of murine 

myeloma. J. Cell Biol. 67:835–851. 

https:// doi .org/ 10 .1083/ jcb .67 .3 .835

3. Blobel, G., and B. Dobberstein. 1975. Transfer of proteins across membranes. 

II. Reconstitution of functional rough microsomes from heterologous 

components. J. Cell Biol. 67:852–862. 

https:// doi .org/ 10 .1083/ jcb .67 .3 .852

4. Blobel, G. 2000. Protein targeting (Nobel lecture). ChemBioChem. 1:86–102. 

https:// doi .org/ 10 .1002/ 1439 -7633(20000818)1: 2 %3C86:: AID -CBIC86 

%3E3 .0 .CO;2 -A

5. Blobel, G. 1980. Intracellular protein topogenesis. Proc. Natl. Acad. Sci. USA. 

77:1496–1500. 

https:// doi .org/ 10 .1073/ pnas .77 .3 .1496

6. Aaronson, R.P., and G. Blobel. 1975. Isolation of nuclear pore complexes 

in association with a lamina. Proc. Natl. Acad. Sci. USA. 72:1007–1011. 

https:// doi .org/ 10 .1073/ pnas .72 .3 .1007

7. Dwyer, N., and G. Blobel. 1976. A modified procedure for the isolation of a 

pore complex–lamina fraction from rat liver nuclei. J. Cell Biol. 70:581–

591. 


https:// doi .org/ 10 .1083/ jcb .70 .3 .581

Blobel Laboratory Trainees contributing to this article : John D. Aitchison (Center for Infectious Disease Research): john.aitchison@cidresearch.org; Markus Albertini (Boehringer 

Ingelheim Pharma GmbH & Co. KG): markus.albertini@gmx.de; David J. Anderson (California Institute of Technology): wuwei@caltech.edu; Bruce Aronow (Cincinnati Children’s 

Hospital Research Foundation): bruce.aronow@cchmc.org; Roland Beckmann (Ludwig-Maximilians Universität München): beckmann@genzentrum.lmu.de; Manindra Bera (The 

Rockefeller University): mbera@rockefeller.edu; Elisa Bergamin (Institute of Genetics and Molecular and Cellular Biology): bergamin.elisa@gmail.com; Doris Berman (Wake Forest 

School of Medicine): dberman@wakehealth.edu; Miguel Berrios (State University of New York, Stony Brook): miguel.berrios@stonybrook.edu; Bartlomiej Blus (The Rockefeller 

University): bblus@rockefeller.edu; Stefano Bonatti (University of Naples Federico II): bonatti@unina.it; Neris Bonifaci (Santen Italy Srl): neris.bonifaci@santen.com; Nica Borgese 

(CNR Neuroscience Institute): n.borgese@in.cnr.it; Nilabh Chaudhary (Hopewell Global Health Initiative): nilabh.chaudhary@hopewellglobal.org; Radha Chauhan (National Centre for 

Cell Science): radha.chauhan@nccs.res.in; Susana Chaves (University of Minho): suchaves@bio.uminho.pt; William J. Chirico (SUNY Downstate Medical Center): william.chirico@

downstate.edu; YuhMin Chook (University of Texas Southwestern): yuhmin.chook@utsouthwestern.edu; Greg Conner (University of Miami): gconner@miami.edu; Jean-Claude 

Courvalin (Paris University): jccourvalin37@icloud.com; Elias Coutavas (The Rockefeller University): coutavas@mac.com; Erik Debler (Thomas Jefferson University): erik.debler@

jefferson.edu; Natalia Denisenko (Massachusetts Institute of Technology): ndenisen@mit.edu; Anne Devillers-Thiery (Pasteur Institute): anne.devill@laposte.net; Maryann Dickey 

Fletcher: mdfletch217@gmail.com; Karima Djabali (Technical University of Munich): djabali@tum.de; Bernhard Dobberstein (ZMBH University Heidelberg): dobberstein@zmbh.

uni-heidelberg.de; Nancy Dwyer (LCCB, NIDDK, National Institutes of Health, retired): dwyer15@yahoo.com; Cordula Enenkel (University of Toronto): cordula.enenkel@utoronto.

ca; Jost Enninga (Institut Pasteur): jostenn@pasteur.fr; Ralf Erdmann (Ruhr-University Bochum): ralf.erdmann@rub.de; Ann Erickson (University of North Carolina at Chapel Hill): 

annherickson@gmail.com; Jie Fan (Accutar Biotechnology): Jiefan@accutarbio.com; Irene (Fecycz) Bridger (Bennett Jones LLP): bridgeri@bennettjones.com; Adele Filson: adelefil@

gmail.com; Daniel Fisher (University of Massachusetts Medical School): daniel.fisher@umassmemorial.org; David Fisher (Massachusetts General Hospital): dfisher3@partners.

org; Robert P. Fisher (Icahn School of Medicine at Mount Sinai): robert.fisher@mssm.edu; Paul Fletcher (Brody School of Medicine, East Carolina University): fletcherpa@ecu.

edu; Monique Floer (Michigan State University): floer@msu.edu; Beatriz Fontoura (University of Texas Southwestern Medical Center): beatriz.fontoura@utsouthwestern.

edu; Martin Friedlander (The Scripps Research Institute): friedlan@scripps.edu; Larry Gerace (The Scripps Research Institute): lgerace@scripps.edu; Reid Gilmore (University of 

Massachusetts Medical School): reid.gilmore@umassmed.edu; Linda Giudice (University of California, San Francisco): Linda.Giudice@ucsf.edu; Mara Gnädig (The Rockefeller 

University): mgnadig@rockefeller.edu; Logan Gray: Logangray3.14@gmail.com; Gary Greenburg (Gordon and Betty Moore Foundation): gary.greenburg@Moore.org; Einar Hallberg 

(Stockholm University): einar.hallberg@dbb.su.se; Qi Hao (Calico): hellohaoqi@gmail.com; Jürgen Helmers (Wayfair): juergen.helmers@gmail.com; Makoto Hijikata (Institute for 

Frontier Life and Medical Sciences, Kyoto University): mhijikat@infront.kyoto-u.ac.jp; Andre Hoelz (California Institute of Technology): hoelz@caltech.edu; Egbert Hoiczyk (University 

of Sheffield): e.hoiczyk@Sheffield.ac.uk; Kuo-Chiang Hsia (Academia Sinica): khsia@gate.sinica.edu.tw; John Hunt (Columbia University): jfh21@columbia.edu; Michael Hurwitz 

(Yale Cancer Center): michael.hurwitz@yale.edu; Tita Isberto (The Rockefeller University): isbertt@rockefeller.edu; Erica Johnson (Thomas Jefferson University): erica.johnson@

jefferson.edu; Martin Kampmann (University of California, San Francisco): martin.kampmann@ucsf.edu; Jim Kaput (Vydiant Inc): jkaput@gmail.com; Elaine Katz: elainekatz@

college.harvard.edu; Felix Kessler (University of Neuchâtel): felix.kessler@unine.ch; Hyung Bum Kim (The Rockefeller University): hkim02@rockefeller.edu; Megan King (Yale 

University): megan.king@yale.edu; Claudia Koch-Brandt (Gutenberg-University Mainz): koch@uni-Mainz.de; Junseock Koh (Seoul National University): junseockkoh@snu.

ac.kr; Doris Kraemer (University Hospital Oldenburg): kraemer.doris@klinikum-oldenburg.de; Aleksandra Krolak (The Rockefeller University): akrolak@rockefeller.edu; Xiaochun Li 

(University of Texas Southwestern Medical Center): xiaochun.li@utsouthwestern.edu; Vishwanath R. Lingappa (Prosetta Biosciences, Inc): vlingappa@prosetta.com; Jairam Lingappa 

(University of Washington): lingappa@uw.edu; Jaisri Lingappa (University of Washington): jais@uw.edu; Patrick Lusk (Yale University): patrick.lusk@yale.edu; Yingli Ma (Amgen 

Inc.): yingli.ma@gmail.com; Michael J. Matunis (Johns Hopkins University): mmatuni1@jhu.edu; Mike McCune (University of California San Francisco): mike.mccune@ucsf.edu; Tom 

Meier (Albert Einstein College of Medicine): tom.meier@einstein.yu.edu; Ivo Melcak (The Rockefeller University): melcaki@rockefeller.edu; Carl Mitchell (The Rockefeller University): 

carl.abbate.mitchell@gmail.com; Mary Moore (Ross School of Medicine): mmoore@rossu.edu; Junona Moroianu (Boston College): moroianu@bc.edu; Matthias Muller (University of 

Freiburg, Germany): matthias.mueller@biochemie.uni-freiburg.de; Vivien Nagy (German Center for Infection Research): vivien.nagy@dzif.de; Johanna Napetschnig (Regeneron 

Pharmaceuticals): johanna.napetschnig@gmail.com; Ulf Nerhbass (Luxembourg Institute of Health): ulf.nehrbass@lih.lu; Chris Nicchitta (Duke University School of Medicine): 

christopher.nicchitta@duke.edu; Sanjay K. Nigam (University of California San Diego): snigam@ucsd.edu; Gisele Nimic (The Rockefeller University): gmnimic@aol.com; Debkumar 

Pain (New Jersey Medical School, Rutgers University): painde@njms.rutgers.edu; Lourdes R. Quirolgico (The Rockefeller University): quiroll@rockefeller.edu; Mahmudur Rahman 

(Cornell University): mr558@cornell.edu; Yi Ren (Vanderbilt University): yi.ren@vanderbilt.edu; Michèle Roa (Institut Pasteur): michele.roa@pasteur.fr; Michael P. Rout (The 

Rockefeller University): rout@rockefeller.edu; Daniel Schmidt (University of Minnesota): schmida@umn.edu; Danny Schnell (Michigan State University): schnelld@msu.

edu; Norbert Schuelke (Takeda Pharmaceuticals International Inc.): norbert.schuelke@takeda.com; Thomas Schwartz (Massachusetts Insitute of Technology): tus@mit.edu; Hyuk-

Soo Seo (Dana-Farber Cancer Institute): hux@crystal.harvard.edu; Alok Sharma (The Rockefeller University): asharma@rockefeller.edu; Greg Shelness (NIH Center for Scientific 

Review): gshelness@gmail.com; Sandy Simon (The Rockefeller University): simon@rockefeller.edu; Nimisha Singh (The Rockefeller University): nsingh01@rockefeller.edu; Susan 

Smith (NYU School of Medicine): susan.smith@med.nyu.edu; Sozanne R. Solmaz (State University of New York at Binghamton): ssolmaz@binghamton.edu; Caterina Strambio De 

Castillia (UMass Medical School): caterina.strambio@umassmed.edu; Jianfeng Sun (The Rockefeller University): jsun01@rockefeller.edu; Anton Titov (DiagnosticDetectives.com): 

anton.titov@diagnosticdetectives.com; Linas Urnavicius (The Rockefeller University): lurnaviciu@rockefeller.edu; Daniel Wacker (Icahn School of Medicine): daniel.wacker@mssm.

edu; Peter Walter (University of California, San Francisco): peter@walterlab.ucsf.edu; Gerry Waters (Novartis): gerrywaters57@gmail.com; Susan R. Wente (Vanderbilt University): 

susan.wente@vanderbilt.edu; Richard A. Wing (Phosplatin Therapeutics): rwing@phosplatin.com; Richard Wong (Kanazawa University): rwong@staff.kanazawa-u.ac.jp; Howard 

Worman (Columbia University): hjw14@columbia.edu; Richard W. Wozniak (University of Alberta): rick.wozniak@ualberta.ca; Jacques YaDeau (Hospital for Special Surgery yadeauj@

hss.edu; Nabeel Yaseen (Northwestern University): nyaseen@nm.org; Kimihisa Yoshida (Kobe Rosai Hospital): kimihisayoshida@icloud.com; Xiaolan Zhao (Memorial Sloan-

Kettering Cancer Center): zhaox1@mskcc.org; Hualin Zhong (Hunter College, CUNY): zhong@genectr.hunter.cuny.edu.



Yüklə 72,79 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə