Modulation of glacier ablation by tephra coverage from Eyjafjallajökull and Grímsvötn volcanoes, Iceland: an automated field experiment



Yüklə 136,53 Kb.
Pdf görüntüsü
tarix01.02.2018
ölçüsü136,53 Kb.
#23369


Earth Syst. Sci. Data, 10, 53–60, 2018

https://doi.org/10.5194/essd-10-53-2018

© Author(s) 2018. This work is distributed under

the Creative Commons Attribution 4.0 License.



Modulation of glacier ablation by tephra coverage from

Eyjafjallajökull and Grímsvötn volcanoes, Iceland: an

automated field experiment

Rebecca Möller

1,2

, Marco Möller



3,4,1

, Peter A. Kukla

2

, and Christoph Schneider



4

1

Department of Geography, RWTH Aachen University, Aachen, Germany



2

Geological Institute, Energy and Minerals Resources Group, RWTH Aachen University, Aachen, Germany

3

Institute of Geography, University of Bremen, Bremen, Germany



4

Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany



Correspondence:

Rebecca Möller (rebecca.moeller@geo.rwth-aachen.de)

Received: 21 June 2017 – Discussion started: 6 July 2017

Revised: 22 November 2017 – Accepted: 23 November 2017 – Published: 10 January 2018



Abstract.

We report results from a field experiment investigating the influence of volcanic tephra coverage

on glacier ablation. These influences are known to be significantly different from those of moraine debris on

glaciers due to the contrasting grain size distribution and thermal conductivity. Thus far, the influences of tephra

deposits on glacier ablation have rarely been studied. For the experiment, artificial plots of two different tephra

types from Eyjafjallajökull and Grímsvötn volcanoes were installed on a snow-covered glacier surface of Vat-

najökull ice cap, Iceland. Snow-surface lowering and atmospheric conditions were monitored in summer 2015

and compared to a tephra-free reference site. For each of the two volcanic tephra types, three plots of variable

thickness ( ∼ 1.5, ∼ 8.5 and ∼ 80 mm) were monitored. After limiting the records to a period of reliable mea-

surements, a 50-day data set of hourly records was obtained, which can be downloaded from the Pangaea data

repository (https://www.pangaea.de; doi:10.1594/PANGAEA.876656). The experiment shows a substantial in-

crease in snow-surface lowering rates under the ∼ 1.5 and ∼ 8.5 mm tephra plots when compared to uncovered

conditions. Under the thick tephra cover some insulating effects could be observed. These results are in contrast

to other studies which depicted insulating effects for much thinner tephra coverage on bare-ice glacier surfaces.

Differences between the influences of the two different petrological types of tephra exist but are negligible com-

pared to the effect of tephra coverage overall.



1

Introduction

Deposits of sedimentary materials on the surface of glaciers

are known to have significant influence on glacier melt as

they alter the energy exchange processes at the surface (e.g.,

Nicholson and Benn, 2013; Mattson et al., 1993; Østrem,

1959). The thickness of the layer controls whether the domi-

nant factor at the glacier surface is the decrease in albedo or

the increase in thermal resistance (Möller et al., 2016). The

former implies an increase in the energy gain to the glacier

from solar radiation while the latter implies a decrease be-

cause of reduced heat conduction to the glacier surface. As

a result, thin layers of supraglacial deposits lead to increased

glacier melt, while thick layers imply decreased glacier melt

or even insulation. With increasing layer thickness glacier

melt peaks at the so-called effective thickness. With further

increasing layer thickness, glacier melt decreases again and

returns to the level of uncovered conditions at the so-called

critical thickness. Beyond this thickness, glacier melt de-

creases further towards the limit of complete insulation (Ad-

hikary et al., 1997).

The influence of tephra on glacier melt is usually

parametrized using in situ data for calibration. However,

most of the formulations developed thus far are designed to

capture the effects of moraine debris deposits which are usu-

ally formed by layers with thicknesses on the order of meters

Published by Copernicus Publications.




54

R. Möller et al.: Modulation of glacier ablation by tephra coverage

or at least decimeters or centimeters. In recent years there

have been numerous studies dealing with the relationship be-

tween debris thickness and resulting modification of ablation

(e.g., Collier et al., 2015; Juen et al., 2014; Pratap et al., 2015;

Rounce et al., 2015).

Volcanically active regions of the world in sub-polar and

polar environments episodically experience the deposition of

tephra on glacier surfaces after explosive volcanic eruptions.

Volcanic tephra deposits show a wider range of depositional

thicknesses than moraine debris, i.e., from sub-millimeter to

meter scale. They also feature distinctly different thermal

properties (Brock et al., 2007). The model formulation of

Evatt et al. (2015) is valid for all thicknesses from dust to

meter scale. However, dedicated studies dealing with the re-

lationship between tephra thickness and the intensity of in-

duced ablation change are remarkably less numerous than

those dealing with moraine debris, even if supraglacial tephra

deposits are known to significantly influence glacier surface

processes and mass balance (e.g., Kirkbride and Dugmore,

2003; Möller et al., 2014; Nield et al., 2013). So far, only

three recent studies have carried out a systematic, quantita-

tive investigation of the influence of tephra deposits of vary-

ing thickness on glacier ablation (Dragosics et al., 2016; Juen

et al., 2013; Möller et al., 2016). However, these studies were

carried out on bare-ice surfaces and only rely on results ob-

tained over short periods. The experiments covered periods

of only 17 (Dragosics et al., 2016) or 13 days (Möller et al.,

2016) of regular daily measurements. Moreover, the experi-

ment of Dragosics et al. (2016) was carried out in an ex situ,

non-local environment under controlled, partly laboratory-

like conditions. The experiment of Juen et al. (2013) lasted

for about 1 month, but ablation measurements were mostly

carried out at an irregular frequency.

Here, we present data from automated, continuous mea-

surements of meteorological conditions and snow-surface

lowering under artificially installed plots of volcanic tephra

of different type and thickness. The measurements were ob-

tained from a field experiment which was carried out on

Vatnajökull ice cap, Iceland, over the 2015 summer season.

Snow-surface lowering rates under different thicknesses of

tephra during days with and without precipitation are com-

pared to illustrate the variability of snow-surface lowering

with tephra thickness and the influence of different meteoro-

logical conditions. It has to be noted that our measurements

are only a proxy for snow ablation, as snow density changes

beneath the tephra plots (which also impact snow-surface

lowering) were not quantified due to logistical limitations.

2

Field experiment

2.1


Study site

The field experiment was carried out at an elevation of

970 m a.s.l. on Tungnaárjökull (64.3253



N, 18.0476

W),


a glacier which is part of the western Vatnajökull ice cap,

Iceland (Fig. 1a). The site was situated on a slightly inclined

surface, facing approximately west-southwest. It was char-

acterized by wind-compacted snow coverage with a homoge-

neous depth of ∼ 2.7 ± 0.2 m throughout the site according to

snow-depth probing. Layering of the snowpack was not well

pronounced and snow density showed little variability over

the vertical profile with an integrated mean of ∼ 410 kg m

3

,



which was obtained by stepwise measurements along a ver-

tical profile.

2.2

Design and setup



The field experiment was designed to quantify the influ-

ence of volcanic tephra (with variable type and thickness) on

snow-surface lowering and to relate the measured lowering

to meteorological conditions. A set of six artificial plots of

tephra coverage with a diameter of 0.7 m were installed at the

study site. Three of these plots were made from tephra of Ey-

jafjallajökull volcano (EYV) and the other three from tephra

of Grímsvötn volcano (GRV; Fig. 1a). Both types of tephra

were spread out at thicknesses of ∼ 1.5, ∼ 8.5 and ∼ 80 mm.

This was done by weighing out tephra material according to

its bulk density (1276 kg m

3



for EYV and 791 kg m

3



for

GRV) as dispersal by thickness was not feasible at the mil-

limeter scale. The three thicknesses approximately match the

effective thickness (1.5 mm), the critical thickness (8.5 mm)

and a thickness under which the dominance of insulation can

be considered. These values were chosen according to results

of a short, 13-day field experiment by Möller et al. (2016)

carried out on bare glacier ice using tephra of GRV.

Contiguous to the tephra plots where snow-surface lower-

ing was recorded, standard meteorological parameters were

measured and recorded by an automatic weather station

(AWS). The parameters include air temperature and relative

humidity at two levels (initially 0.3 and 1.1 m above snow,

but increasing according to snow-surface lowering), wind

speed and direction (initially 2.1 m above snow), liquid pre-

cipitation and incoming and reflected shortwave radiation.

For measuring snow-surface lowering at the tephra plots,

an aluminum structure for sensor installation was mounted

(Fig. 1b). Over each of the six plots ultrasonic height gauges

measured snow-surface lowering at hourly intervals. In ad-

dition, sensors for surface temperature measurements were

installed over the two ∼ 80 mm plots. Table 1 gives an

overview of all sensor and measurement specifications for

both the AWS and the tephra plots. The snow-surface lower-

ing measurement at the AWS provides a reference represent-

ing non-tephra covered conditions.

A camera system, taking photographs hourly, was setup

to monitor and document the conditions of tephra plots and

AWS. Unfortunately, it stopped working after a few days and

we do not use these data here.

Earth Syst. Sci. Data, 10, 53–60, 2018

www.earth-syst-sci-data.net/10/53/2018/




R. Möller et al.: Modulation of glacier ablation by tephra coverage

55

Figure 1.

Overview of the field experiment. The locations of tephra sampling at the calderas of Eyjafjallajökull volcano (EYV) and

Grímsvötn volcano (GRV) and the location of the field experiment are shown in (a). The installation of the field experiment is shown

in (b). The three plots in the foreground are covered by EYV tephra and the three plots in the back by GRV tephra.

Table 1.

Measured quantities at the field experiment installation and at the automatic weather station. For each variable the type of the sensor

is given along with its uncertainty and the type of data aggregation over each 1 h record interval.

Variable


Sensor

Uncertainty

Aggregation

Air temperature

Vaisala HMP35C

±

0.4 K



Average

Relative humidity

Vaisala HMP35C

±

3 %



Average

Incoming SW radiation

Campbell Scientific CS300

±

5 %



Average

Reflected SW radiation

Campbell Scientific SP1110

±

5 %



Average

Rainfall


RM Young 52203

±

2 %



Total

Wind speed

RM Young 05103

±

0.3 m s



1

Average



Wind direction

RM Young 05103

n.a.

Sample


Snow-surface lowering (reference)

Campbell Scientific SR50

±

1 cm


Sample

Surface temperature

Campbell Scientific IRTS-P

±

0.3 K



Average

Snow-surface lowering (tephra plots)

Campbell Scientific SR50A

±

1 cm



Sample

2.3


Tephra sampling

The tephra material was directly sampled at the calderas

of EYV and GRV (Fig. 1a) in order to obtain pristine ma-

terial. At EYV the tephra was acquired from inside the

caldera (63.6314

N, 19.6373



W). This sampling was car-

ried out on 7 May 2015. At GRV the tephra was collected

at rocky outcrops near the southern caldera rim (64.4061

N,

17.2741



W). Here, sampling was done on 8 May 2015. At

both locations, the tephra was taken from active geothermal

areas.


2.4

Measurements and data preparation

The experiment started on 10 May 2015 and recorded hourly

means and samples from the sensors described in Table 1 un-

til 8 September 2015. Measurements stopped on 9 Septem-

ber 2015, when ablation was so advanced that the aluminum

structure collapsed. During the collapse, the lowermost parts

of the structure were still anchored inside the ice, but the

center of mass of the overlying installation was probably

too high above ground. The timing of the collapse was eas-

ily identifiable from abnormal radiation and distance mea-

surements. For studying the influences of tephra coverage on

snow-surface lowering, the records had to be narrowed down

to a period without snow cover on top of the tephra. The se-

lection of the suitable period is based on measured surface

temperatures on the tephra packs of the two ∼ 80 mm plots

(Fig. 2).

Surface temperature is generally closely related to the

intra-day cycles of air temperature and shortwave radiation.

However, snow or ice surfaces cannot exceed 0

C. This im-



plies that surface temperatures which follow a regular above-

zero intra-day cycle indicate a completely snow- or ice-free

surface. In our field experiment, this is the case for the period

after 15 June 2015 (Fig. 2). Up until this date, sub-zero sur-

face temperatures prevail despite the presence of intra-day air

temperature cycles which regularly exceed 0

C. This indi-



cates at least partly snow covered conditions on the surfaces

of the tephra plots.

From 4 August 2015 onwards, the intra-day cycles of sur-

face temperature start to become irregular. In addition, the

periodic, substantially positive offsets of surface tempera-

ture over air temperature, which occurred consistently over

www.earth-syst-sci-data.net/10/53/2018/

Earth Syst. Sci. Data, 10, 53–60, 2018




56

R. Möller et al.: Modulation of glacier ablation by tephra coverage

June

July


August

September

−8.0

0.0


+8.0

+16.0


Δ

T (K)


−16.0

−8.0


0.0

8.0


16.0

ST (°C) 


EYV

GRV


EYV

GRV


(a)

(b)


Figure 2.

Records of measured hourly surface temperatures at the two ∼ 80 mm tephra plots (a) and calculated differences between these

surface temperatures and air temperatures measured at the automatic weather station (b) over 11 May to 8 September. The air temperatures

are calculated as the mean of upper and lower air temperature sensor at the AWS. The types of tephra (EYV for Eyjafjallajökull volcano and

GRV for Grímsvötn volcano) on which the surface temperatures were measured are indicated by color code. The grey shading in the center

of the time series indicates the period considered in the final data set, i.e., 15 June to 3 August.

15 June to 3 August, were replaced by rather irregular, pre-

dominantly negative offsets (Fig. 2). This combination of ob-

servations suggests that the tephra packs started to disinte-

grate, providing space for snow or bare-ice outcrops which

destroyed the homogeneous surfaces of the tephra plots. Over

homogeneous, low-albedo tephra coverage, shortwave radia-

tion adds considerably to the energy gain at the surface and

thus drives surface temperatures far above the air temperature

level. Over rather patchy tephra coverage with high-albedo

bare-ice outcrops, the integrated energy gain due to absorbed

shortwave radiation is much lower. In addition, the surface

temperature of the outcrops is capped at 0

C. The integrated



surface temperature of the tephra plots might thus lie well

below the air temperature level.

Based on these considerations, we limit the observations

to the 50-day period covering 15 June to 3 August (Fig. 2).

The final data set contains hourly averaged data for all mete-

orological parameters measured at the AWS (Fig. 3a). More-

over, it contains hourly data from all seven ultrasonic height

gauges, i.e., from snow-surface lowering measurements at

the six tephra plots and at the reference site at the AWS

(Fig. 3b).

We compared the snow-surface lowering rates at the dif-

ferent plots. To facilitate this analysis, running 24 h differ-

ences, i.e., running daily snow-surface lowering rates, were

calculated for the data of each of the seven sensors when-

ever valid measurements existed at all six tephra plots and

at the reference site. This was undertaken in order to assure

full comparability of the 24 h snow-surface lowering values.

These running 24 h differences are also part of the published

data set.

3

Results

Snow-surface lowering measurements over the chosen time

period (15 June to 3 August 2015) reveal a loss of 2.25 m

of snow cover at the reference site and between 2.21 and

2.97 m at the tephra plots (Fig. 3b). During almost the en-

tire period the study site showed snow coverage. Only for

the plots with ∼ 1.5 mm tephra coverage it cannot be ruled

out that the snowpack beneath the plots disappeared just be-

fore the end of the study period. For the reference site, the

snowpack completely disappeared during the second week

of August according to the measured albedo values. The pro-

gressive snow-surface lowering led to an increasing measure-

ment uncertainty towards the end of the study period because

the sensors’ footprints might have extended beyond the bor-

ders of the tephra plots and erosion of the tephra material

might have destroyed the previously homogeneous disper-

sal across the plots. Nevertheless, the running daily snow-

surface lowering rates, i.e., the slopes of the snow-surface

lowering curves (Fig. 3b), show small variability with time,

even if ephemeral increases sporadically occur at the end of

June and during mid-July. The lowering rates at the six dif-

ferent plots become more similar over the second half of July,

suggesting an incipient disintegration of the different tephra

packs presumably due to erosion by meltwater.

Major disturbances occur in the snow-surface lowering

curves of two of the GRV tephra plots (∼ 8.5 and ∼ 80 mm)

in mid-July (Fig. 3b). On 14 July the measured distance at the

8.5 mm GRV tephra plot increased by ∼ 0.20 m, followed



by an increase of ≥ 0.15 m at the ∼ 80 mm GRV tephra plot

on 16 July. These disturbances coincide with a major rain

event (Fig. 3a). It can thus not be ruled out that partial de-

structions of the tephra plots and of the upper layers of the

snowpack occurred at this date subsequently distorting the

distance measurements at the six tephra plots.

The relationships between tephra thickness and running

daily snow-surface lowering rates (Fig. 4) resemble the find-

ings of previous studies dealing with bare-ice ablation (Kirk-

bride and Dugmore, 2003; Mattson et al., 1993; Möller

et al., 2016). At the thin (∼ 1.5 mm) tephra plots, snow-

Earth Syst. Sci. Data, 10, 53–60, 2018

www.earth-syst-sci-data.net/10/53/2018/



R. Möller et al.: Modulation of glacier ablation by tephra coverage

57

−8.0



0.0

8.0


16.0

ST (°C)


0.0

1.0


2.0

3.0


SSL

EYV


 (m)

15 


June

July



15 

July


August


0.0

1.0


2.0

3.0


SSL

GRV


 (m)

b)

(

0.0 mm (ref.)

1.5 mm

8.5 mm


80.0 mm

0.0 mm (ref.)

1.5 mm

8.5 mm


80.0 mm

−3.0


0.0

3.0


6.0

T (°C) 


40

60

80



100

RH (%)


0

10

20



W

S

 (m



 s

–1

)



270

0

90



180

270


WD

 (°)


0

300


600

900


SW

R

 (W



m

-

)



2

15 


June

July



15 

July


August


0.0

1.0


2.0

3.0


P (mm)

(a)

Figure 3.

Hourly records of the measurements of all sensors installed at the automatic weather station are shown in (a), and measurements

of all sensors mounted at the field experiment installation are shown in (b). Records are shown for 15 June to 3 August. For air temperature

(T ) and relative humidity (RH) the records of the upper sensor (blue line) are shown together with those of the lower sensor (red line).

Wind speed (blue line) is shown together with wind direction (red line); note the different y axes here. Incoming shortwave radiation (SWR,

blue line) is shown together with reflected shortwave radiation (red line). For precipitation (P ), only the liquid fraction has been measured.

Surface temperatures (ST) are shown for the ∼ 80 mm plots of tephra from Eyjafjallajökull volcano (EYV, blue line) and from Grímsvötn

volcano (GRV, red line). Cumulative snow-surface lowering (SSL) is shown over the different plots (indicated by color codes) of EYV tephra

and GRV tephra.

surface lowering was substantially increased by a factor of

1.49 ± 0.88 (mean ± 1σ over time) under EYV tephra and by

a factor of 1.51 ± 0.71 under GRV tephra. At the tephra plots

geared to the critical thickness of the tephra (∼ 8.5 mm),

snow-surface lowering was equal to uncovered conditions

under EYV tephra (1.00 ± 0.61) and slightly increased un-

der GRV tephra (1.17 ± 0.57). However, at the thick tephra

plots (∼ 80 mm) the observed snow-surface lowering did not

www.earth-syst-sci-data.net/10/53/2018/

Earth Syst. Sci. Data, 10, 53–60, 2018



58

R. Möller et al.: Modulation of glacier ablation by tephra coverage

Mean (all days)

Mean (dry days)

Mean (wet days)

Mean (all days)

Mean (dry days)

Mean (wet days)

0.0

1.5


8.5

80.0


Tephra thickness (mm)

0

1



2

3

4



5

6

SSL relative to 0.0 mm tephra



GRV

0.0


1.5

8.5


80.0

Tephra thickness (mm)

0

1

2



3

4

5



6

SSL relative to 0.0 mm tephra



EYV

Figure 4.

Running 24 h snow-surface lowering (SSL) rates at the different plots of tephra from Eyjafjallajökull volcano (EYV) and from

Grímsvötn volcano (GRV) relative to the reduction rates measured at the non-tephra covered reference site. The box plots give an overview

of the data spread across all running 24 h values recorded during the field experiment period (15 June to 3 August). Outliers are indicated

as open circle symbols. Mean values over the entire field experiment period are indicated by yellow triangles, and the mean values over wet

(precipitation > 0.1 mm) and dry (precipitation ≤ 0.1 mm) days are shown as color-coded line graphs.

match expectations drawn from previous bare-ice knowl-

edge. Under EYV tephra, snow-surface lowering was close

to uncovered conditions (0.98 ± 0.73) and under GRV tephra

only a slight insulation effect was present (0.85 ± 0.59). The

rather high standard deviations, however, suggest a consid-

erable, misleading influence of sporadic, anomalously high

and potentially erroneous values. Our assumption, which is

supported by the distinctly more moderate medians of 0.93

(EYV) and 0.76 (GRV; Fig. 4), is of insulating conditions

under both ∼ 80 mm tephra covers. Nevertheless, the high

snow-surface lowering rates at the two sites with ∼ 80 mm

tephra cover suggest substantially different snowpack behav-

ior than bare glacier ice behavior under tephra coverage.

This unexpected and thus important finding cannot be ex-

plained in full detail here because of limitations in the exper-

imental setup. One obvious explanation is the fact that pure

snow ablation is masked by additional processes in the mea-

surements conducted. Snow-surface lowering resulting from

settling and compaction of the snowpack as well as from

metamorphism on the snow-crystal level also definitely im-

pact the measurements. Moreover, the rather small horizontal

extent of the tephra plots probably permits lateral influences

of weather conditions on the snowpack beneath the plots. Ex-

planations beyond these influences cannot be given, because

the pure, energy-balance-controlled ablation signal cannot be

isolated from measured snow-surface lowering. It is thus rec-

ommended that future experiment setups at least account for

snow density variations.

Distinct differences were observed between snow-surface

lowering rates during periods with and without precipitation

(Fig. 4). On wet days the increase in snow-surface lower-

ing rates under the thin tephra covers compared to uncov-

ered conditions is even more pronounced than it is on dry

days. This finding is in clear contrast to short-term measure-

ments by Möller et al. (2016) on bare glacier ice. Their study

shows that on wet days sub-tephra ice ablation rates are even

decreased when compared to uncovered conditions. The in-

crease in snow-surface lowering under the ∼ 8.5 mm tephra

covers compared to uncovered conditions is also higher on

wet days than on dry days. This implies that the critical

thickness of wet tephra is generally higher than that of dry

tephra. The strength of the small insulation effect at the thick

80 mm tephra plots is, however, independent of the alloca-



tion to dry or to wet days.

There were average summer meteorological conditions

during the field experiment period (15 June to 3 Au-

gust 2015; Fig. 3a). Air temperature mostly fluctuated be-

tween 0 and +4

C (with few outliers) and showed a mean of



+

2.1 ± 1.4

C (mean ± 1σ ). Thereby, mean (± 1σ ) air tem-



perature gradients between lower and upper sensors amount

to +0.20 ± 0.15 K m

1

. Daily albedo means decreased from



0.71 during the first week of the field experiment period

to ∼ 0.58 during its last week. The associated daily mean of

net shortwave radiation fluxes was 86.0 ± 22.4 W m

2

. The



mostly undisturbed daily cycles of incoming shortwave radi-

ation suggest little cloud coverage. Accordingly, total rain-

fall over the period sums up to only 40.2 mm. However, high

wind speeds of 5.65 ± 3.34 m s

1

(mean ± 1σ ) with peak



wind periods reaching 12–19 m s

1



might have led to con-

siderable undercatch of precipitation by the tipping-bucket

rain gauge (Sugiura et al., 2006). The by far most frequently

occurring wind directions (ENE to ESE) resemble the kata-

batic flow direction down the western slope of Vatnajökull.

4

Data availability

The final data set is organized in one single csv file

which is available for download from the Pangaea Earth

Earth Syst. Sci. Data, 10, 53–60, 2018

www.earth-syst-sci-data.net/10/53/2018/



R. Möller et al.: Modulation of glacier ablation by tephra coverage

59

and environmental sciences data repository (Möller et al.,



2017; https://doi.org/10.1594/PANGAEA.876656). It con-

tains 2904 hourly samples (11 May to 8 September) of 18

variables. Among these, the six variables related to snow-

surface lowering measurements at the artificial tephra plots

are limited to 1200 hourly samples (15 June to 3 August)

only (see Sect. 2.4).



5

Summary and outlook

A field experiment, studying the influences of different types

of volcanic tephra on snow-surface lowering, was conducted

on Vatnajökull ice cap, Iceland, in summer 2015. Two types

of Icelandic tephra were compared, one from Eyjafjallajökull

volcano and one from Grímsvötn volcano. Both tephras

were sampled right before the start of the experiment at the

calderas of the respective volcanoes. For the experiment,

three different artificial plots of different thickness (∼ 1.5,

8.5 and ∼ 80 mm) were installed from both tephras. Snow-



surface lowering at all six tephra plots and at a tephra-free

reference site was monitored automatically over the summer

season jointly with surface temperature on the two ∼ 80 mm

tephra plots and concurrent atmospheric variables.

The experiment ran from mid-May to mid-September.

Snow-surface lowering could be determined for 50 days

(15 June to 3 August) at hourly resolution. The data set com-

prises records of air temperature and relative humidity at two

levels, wind speed and direction, rainfall, incoming and re-

flected shortwave radiation and snow-surface lowering (in

terms of distance from sensor to surface) over a non-tephra

covered reference site and over the six tephra plots. Surface

temperature was additionally measured at the two ∼ 80 mm

tephra plots. We presented a comparison of snow-surface

lowering rates under the different tephra plots.

Snow-surface lowering showed substantial median in-

creases at the two ∼ 1.5 mm tephra plots (∼ 17 % under Ey-

jafjallajökull tephra and ∼ 40 % under Grímsvötn tephra).

However, snow-surface lowering was also considerably in-

creased at the ∼ 8.5 mm Grímsvötn tephra plot (median of

11 %), which contrasts with results of previous studies



on bare-ice glacier surfaces. Insulation was small even un-

der the thick ∼ 80 mm plots (median reductions of ∼ 7 %

under Eyjafjallajökull tephra and ∼ 24 % under Grímsvötn

tephra). This also stands in contrast to earlier bare-ice re-

sults, where almost full insulation was found under compa-

rably thick tephra covers. The increase in snow-surface low-

ering on days with rainfall under thinner tephra covers com-

pared to uncovered conditions is markedly higher than on

days without rainfall. This is in contrast to bare-ice condi-

tions, where no ablation increase is present on rainfall days

at all. This finding leaves room for further investigation. In-

fluence of tephra type is small compared to the other factors.

For potential future experiments, the results and our expe-

rience in the field suggest that frequent snow profile analyses

or at least snow density measurements over the experiment

period are required to interpret the snow-surface lowering

measurements obtained with regards to snow ablation. How-

ever, this is logistically challenging, as would be the sug-

gested use of larger tephra plot diameters, which would bet-

ter prevent snow-surface lowering measurements from being

influenced by lateral energy fluxes from the surface to the

sub-tephra snowpack. Installing the six tephra plots with a

diameter of 2.0 m instead of 0.7 m would have required the

transport of over 320 kg of tephra (instead of ∼ 115 kg) from

the two sampling sites to the field experiment site.

In conclusion, the experiment delivers a data set which

clearly illustrates that the influences of supraglacial tephra

cover on glacier ablation are considerably different, depend-

ing on the surface of the glacier, i.e., snow or bare ice. To

our knowledge, this data set is the first to continuously mea-

sure snow-surface lowering under different types and thick-

nesses of volcanic tephra. Together with the simultaneously

acquired meteorological conditions, this data set allows for

further in-depth study of the influence of weather conditions

on sub-tephra snowmelt. Moreover, it can readily be included

as a calibration or validation data set in broader studies on the

influences of supraglacial particle cover on ablation.

Competing interests.

The authors declare that they have no con-

flict of interest.

Acknowledgements.

The field experiment was funded by grant

no. SCHN680/6-1 and no. KU1476/5-1 of the German Research

Foundation (DFG). We thank the Vatnajökull National Park

administration for granting permission to carry out the experiment

and the associated tephra sampling at Grímsvötn caldera. Helpful

comments on the manuscript by Jan Lenaerts and Christoph Mayer

are gratefully acknowledged.

Edited by: Reinhard Drews

Reviewed by: Jan Lenaerts and Christoph Mayer



References

Adhikary, S., Seko, K., Nakawo, M., Ageta, Y., and Miyazaki, N.:

Effect of surface dust on snow melt, Bull. Glacier Res., 15, 85–

92, 1997.

Brock, B., Rivera, A., Casassa, G., Bown, F., and Acuña, C.: The

surface energy balance of an active ice-covered volcano: Vil-

larrica Volcano, Southern Chile, Ann. Glaciol., 45, 104–114,

https://doi.org/10.3189/172756407782282372, 2007.

Collier, E., Maussion, F., Nicholson, L. I., Mölg, T., Immerzeel, W.

W., and Bush, A. B. G.: Impact of debris cover on glacier ab-

lation and atmosphere-glacier feedbacks in the Karakoram, The

Cryosphere, 9, 1617-1632, https://doi.org/10.5194/tc-9-1617-

2015, 2015.

Dragosics, M., Meinander, O., Jónsdóttir, T., Dürig, T., De Leeuw,

G., Pálsson, F., Dagsson-Waldhauserová, P., and Thorsteinsson,

www.earth-syst-sci-data.net/10/53/2018/

Earth Syst. Sci. Data, 10, 53–60, 2018



60

R. Möller et al.: Modulation of glacier ablation by tephra coverage

T.: Insulation effects of Icelandic dust and volcanic ash on snow

and ice, Arab. J. Geosci., 9, 126, https://doi.org/10.1007/s12517-

015-2224-6, 2016.

Evatt, G. W., Abrahams, D., Heil, M., Mayer, C., Kingslake,

J., Mitchell, S. L., Fowler, A. C., and Clark, C. D.: Glacial

melt under a porous debris layer, J. Glaciol., 61, 825–836,

https://doi.org/10.3189/2015JoG14J235, 2015.

Juen, M., Mayer, C., Lambrecht, A., Wirbel, A., and Kueppers,

U.: Thermal properties of a supraglacial debris layer with re-

spect to lithology and grain size, Geogr. Ann. A, 95, 197–209,

https://doi.org/10.1111/geoa.12011, 2013.

Juen, M., Mayer, C., Lambrecht, A., Han, H., and Liu, S.: Impact

of varying debris cover thickness on ablation: a case study for

Koxkar Glacier in the Tien Shan, The Cryosphere, 8, 377–386,

https://doi.org/10.5194/tc-8-377-2014, 2014.

Kirkbride, M. P. and Dugmore, A. J.: Glaciological re-

sponse

to

distal



tephra

fallout


from

the


1947

erup-


tion of Hekla, south Iceland, J. Glaciol., 49, 420–428,

https://doi.org/10.3189/172756503781830575, 2003.

Mattson, L. E., Gardner, J. S., and Young, G. J.: Ablation on debris

covered glaciers: an example from the Rakhiot Glacier, Punjab,

Himalaya, IAHS Redbooks, 218, 289–296, 1993.

Möller, R., Möller, M., Björnsson, H., Gudmundsson, S., Pálsson,

F., Oddsson, B., Kukla, P. A., and Schneider, C.: MODIS-derived

albedo changes of Vatnajökull (Iceland) due to tephra deposi-

tion from the 2004 Grimsvötn eruption, Int. J. Appl. Earth Obs.

Geoinf., 26, 256–269, https://doi.org/10.1016/j.jag.2013.08.005,

2014.

Möller, R., Möller, M., Kukla, P. A., and Schneider, C.: Im-



pact of supraglacial deposits of tephra from Grimsvötn vol-

cano, Iceland, on glacier ablation, J. Glaciol., 62, 933–943,

https://doi.org/10.1017/jog.2016.82, 2016.

Möller, R., Möller, M., Kukla, P. A., and Schneider, C.: Me-

teorological observations and ablation characteristics during

the TIOGA experiment on Iceland in 2015, PANGAEA,

https://doi.org/10.1594/PANGAEA.876656, 2017.

Nicholson, L. and Benn, D. I.: Properties of natural supraglacial de-

bris in relation to modelling sub-debris ice ablation, Earth Surf.

Proc. Land., 38, 490–501, https://doi.org/10.1002/esp.3299,

2013.

Nield, J. M., Chiverrell, R. C., Darby, S. E., Leyland, J., Vircavs,



L. H., and Jacobs, B.: Complex spatial feedbacks of tephra re-

distribution, ice melt and surface roughness modulate ablation

on tephra covered glaciers, Earth Surf. Proc. Landf., 38, 95–102,

https://doi.org/10.1002/esp.3352, 2013.

Østrem, G.: Ice melting under a thin layer of moraine, and the exis-

tence of ice cores in moraine ridges, Geogr. Ann., 41, 228–230,

1959.

Pratap, B., Dobhal, D. P., Mehta, M., and Bhambri, R.: Influence of



debris cover and altitude on glacier surface melting: a case study

on Dokriani Glacier, central Himalaya, India, Ann. Glaciol., 56,

9–16, https://doi.org/10.3189/2015AoG70A971, 2015.

Rounce, D. R., Quincey, D. J., and McKinney, D. C.: Debris-

covered glacier energy balance model for Imja-Lhotse Shar

Glacier in the Everest region of Nepal, The Cryosphere, 9, 2295–

2310, https://doi.org/10.5194/tc-9-2295-2015, 2015.

Sugiura, K., Ohata, T., and Yang, D.: Catch characteristics of pre-

cipitation gauges in high-latitude regions with high winds, J.

Hydrometeorol., 7, 984–994, https://doi.org/10.1175/JHM542.1,



2006.

Earth Syst. Sci. Data, 10, 53–60, 2018



www.earth-syst-sci-data.net/10/53/2018/

Document Outline


Yüklə 136,53 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə