Whole Genome Sequencing and the Zygomycota



Yüklə 68,01 Kb.
Pdf görüntüsü
tarix23.01.2018
ölçüsü68,01 Kb.
#21881


Volume 4 • Issue 1 • 1000e116

Fungal Genom Biol

ISSN: 2165-8056  FGB, an open access journal 

Open Access

Editorial

Gryganskyi and Muszewska,

 

Fungal Genom Biol 2014, 4:1 



DOI: 

10.4172/2165-8056.1000e116

Whole Genome Sequencing and the Zygomycota

Andrii P Gryganskyi

1

* and Anna Muszewska

2

1

Department of Biology, Duke University, Durham, North Carolina, USA

2

Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland

*Corresponding author:  Andrii P Gryganskyi, Department of Biology, Duke

University, USA, Tel: 919 536 9702; E-mail: 

apg10@duke.edu

Received January 10, 2014; Accepted January 20, 2014; Published January 24, 

2014


Citation: Gryganskyi AP, Muszewska A (2014) Whole Genome Sequencing and 

the Zygomycota. Fungal Genom Biol 4: e116. doi

:10.4172/2165-8056.1000e116

Copyright: © 2014 Gryganskyi AP, et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the 

original author and source are credited.

The zygomycetes (polyphyletic phylum Zygomycota Moreau) 

include the first terrestrial and “primitive” fungi. The group 

is an assemblage of six lineages whose status, relative to each 

other, is undefined: Mucoromycotina, Entomophthoromycota, 

Kickxellomycotina, Zoopagomycotina, Mortierellomycotina and 

Glomeromycota. So far, less than a dozen zygomycetes genomes 

are publically available, a very small proportion of the total number 

of sequenced genomes – there are ~400 Genomes for Dikarya 

(Ascomycota and Basidiomycota).

There are several probable reasons for this. Firstly, there are 

substantially fewer described species of early divergent fungi in 

comparison with those that have evolved more recently. There are 

nearly one thousand valid taxa names for zygomycetes (~1% of all 

known fungi), compared to over 30,000 taxa in each of the Ascomycota 

and Basidiomycota. However given zygomycetes are understudied, the 

diversity of this group might be much higher, as was recently shown 

for Cryptomycota [1]. Another reason there has been less interest in 

the zygomycetes from a genomic perspective is that dikaryotic fungi 

play more significant roles in human life. Many of these are important 

pathogens of humans, domestic animals and agricultural plants, 

biotechnology agents, edible mushrooms and model organisms. In 

addition, the representatives of Dikarya that produces fruit bodies drew 

early attention and were more straightforward to study. Zygomycota 

have been considered less important, however many of their taxa are 

ubiquitous and also play vital roles in ecosystems and human life. Here, 

we introduce subphyla, which have been grouped within Zygomycotas.



Mucoromycotina

Mucoralean fungi are the most numerous and the best known clade 

in the Zygomycota; nearly 300 species are known. They are common 

in all soils, rapidly colonizing any easily degradable carbohydrate 

or protein source; therefore most of them are easy to grow under 

laboratory conditions. Eight genomes have been sequenced so far 

– more than in any other clade [2-4]. Several more genomes will be

released soon [2,4,5].

Mucoralean genomes are interesting, firstly from a medical 

perspective. It is notable that the number of mucormycoses with 

fatal outcomes is growing every year. A major reason for this is the 

introduction of newer anti-fungals (azoles). These have facilitated 

successful control of other infective fungal agents (candidioses and 

aspergilloses), generating new opportunities for Mucoromycotina 

which can infect humans and which do not respond to these 

treatments [6]. Additionally, it is likely that some of the mucoralean 

fungi can be opportunistic pathogens in animals and humans under 

certain conditions due to their ability to grow at body temperature 

and dimorphic growth potential [7]. Especially endangered are 

immunocompromised patients with conditions such as hematological 

malignancies, neutropenia or uncontrolled ketoacidosis in diabetes. 

Patients are also vulnerable to infections by direct inoculation via burns, 

car accidents or nosocomial transmissions [6]. Sequencing pathogenic 

fungi and their non-pathogenic relatives, to elucidate genetic regions of 

pathogenicity, would be particularly useful. Such pathogenic and non-

pathogenic ‘pairs’ can be easily found in the genera Mucor, Lichtheimia, 

Rhizopus and others. Some of the Mucoromycotina are also important 

crop pathogens, especially known for post-harvest diseases of sweet 

potatoes, strawberries and other agricultural plants. However this 

group can be useful for food production and biotechnological purposes. 

Many of the mucoralean fungi have been used for centuries for many 

fermented foods and drinks and nowadays are also used as vigorous 

producers of various secondary metabolites: enzymes, fatty acids and 

carotenoids. 



Mortierellomycotina

There are nearly 100 known species of these fungi, and aside 

from the genus Modicella, they are easy to grow in culture. As with 

other zygomycetes, studies using environmental sequencing suggest 

Mortierellomycotina might contain unculturable and currently 

undescribed microscopic fungi. All species in this subphylum are 

common and ubiquitous soil dwellers and saprotrophs, some of them 

are also plant associates and endophytes [8]. Mortierella wolfii is a cattle 

pathogen which causes abortive infections and in rare cases leads to 

disseminated systemic infections [9]. 

Obtaining genomic information would aid efforts to elucidate the 

structure of this clade, which rDNA data alone are unable to resolve 

[10]. The current molecular phylogeny of Mortierellomycotina shows 

that the dominating genus Mortierella contains several other genera, 

which are very different morphologically, but which have similar 

rDNA. Genus Mortierella needs a thorough revision based on at least 

a multiple gene phylogeny. Genome sequencing of mortierellalean 

fungi would also elucidate the origin of fungal fruit bodies, which 

apparently first occurred in this group [11]. Genome data will help 

us to understand the role of these fungi in natural ecosystems, and to 

utilize their industrial potential (production of poly-unsaturated fatty 

acids) more efficiently. Genome and transriptome data are available 

now for three species: Mortierella verticillata [12], M. elongata [13], 

and M. alpina [14]. 



Entomophthoromycota

This is the second largest group of zygomycetes with ca. 300 

species, including saprotrophic and entomopathogenic zygomycetes. 

Only one genome is available: Conidiobolus coronatus [15]. Three more 

are currently being sequenced through the 1000 Fungal Genomes 

project [16]: Basidiobolus meristosporus,  Conidiobolus thromboides 

and Zoophthora radicans. These three taxa represent three major fungal 

Fungal Genomics & Biology 

Fu

ng

al 

Ge

nomics & B

iolo

gy

ISSN: 2165-8056



Citation: Gryganskyi AP, Muszewska A (2014) Whole Genome Sequencing and the Zygomycota. Fungal Genom Biol 4: e116. doi

:10.4172/2165-

8056.1000e116

Page 2 of 3

Volume 4 • Issue 1 • 1000e116

Fungal Genom Biol

ISSN: 2165-8056  FGB, an open access journal 

clades in Entomophthoromycota: saprotrophic Basidiobolomycetes, 

saprotrophic and facultatively pathogenic Ancylistaceae and the ‘core’ 

obligately entomopathogenic Entomophthoraceae [17,18]. Genome 

information from pathogens of economically important crop pests will 

provide insight into pathogenicity mechanisms, and could improve 

the use of these fungi as bio-control agents. Some Basidiobolus species 

are known to infect humans [19]. Besides being of practical interest, 

sequencing these genomes will help to resolve questions around the 

origin of terrestrial fungi, because Entomophthoromycota is probably 

one of the earliest terrestrial fungal groups [20]. 

Glomeromycota

This clade is famous for arbuscular mycorrhizae (AM) formation 

and the ~430 MYA old fossils generated by its ancestors. The 

morphology of these fossilized species is remarkably similar to that 

seen in current AM fungi [21,22]. All of the ca. 250 described species 

can grow only on the roots of host plants. This makes harvesting 

sufficient amounts of biomass for DNA extraction difficult. Genome 

and transcriptome data are available only for Rhizophagus irregularis 

(formerly Glomus intraradices) [23]. In general, the genome assemblies 

done for this fungus thus far are of poor quality relative to those available 

for other fungi. The relatively large size of this group’s asexual spores 

(up to 800 um in diameter) and the thousands of genetically identical 

nuclei they contain [24] means new techniques of genome sequencing 

from one cell are very promising for the Glomeromycota. Sequencing 

genomes of glomeralean fungi is of great importance for forestry and 

agriculture, because at least 80% of vascular plants host AM fungi [24]. 

Besides being of practical interest, genome information will help place 

Glomeromycota on the Fungal Tree of Life. Former zygomycetes

they have recently been separated from this group and placed as a 

sister group to Dikarya based on rDNA phylogeny [25]. However, 

phylogenies based on multiple orthologs suggest Glomeromycota are 

closely related to Mortierellomycotina and Mucoromycotina (Bonito; 

Gryganskyi, unpublished).

Kickxellomycotina and Zoopagomycotina

Despite there being a relatively high number of described taxa in 

these two related fungal groups (nearly 180 species in each subphylum), 

only one genome has been sequenced: Coemansia reversa [26]. Many of 

these fungi are parasites of invertebrates, commensal of arthropod guts 

or saprotrophs. Some of them are of importance as pathogens of insect 

pests. Sequencing their genomes would be useful from a bio-control 

perspective. The majority of these fungi are hard to grow in vitro, but 

several coprophilic species are cultivable on standard media. Several 

species of this subphylum will be sequenced within 1KFG project [16].



Common Problems in Zygomycete Sequencing 

There are several major obstacles hindering Zygomycota 

genome projects. Everything starts with cultivation, which is feasible 

mostly for saprotrophs and pathogens with a broad host range 

(most of Mucoromycotina, genera Basidiobolus and Conidiobolus 

(Entomophthoromycota);  Kickxella, Dimargaris and Coemansia 

(Kickxellomycotina)). Obligate parasites or commensal of arthropods 

are either unculturable or need special conditions for their growth in 

the lab. Many of them loose their vigor after several culture transfers, 

therefore obtaining nucleic acids in sufficient quantities is complicated. 

Many representatives of entomophthoraleans and some Mortierellas 

develop ‘empty’ colonies, which actively grow only at the colony edge. 

This eventually reduces the output of DNA, even when a relatively large 

amount of biomass can be harvested.

Another reason for the difficulties in obtaining sufficient quantity 

and quality of DNA and RNA is perhaps the high activity level of 

DNAses and RNAses in this group. Common extraction protocols 

like CTAB-chloroform extraction do not inhibit these enzymes, and 

nucleic acids after extraction are usually either highly degraded or 

hardly visible on gels. In order to obtain good quality nucleic acids 

standard extraction kits need to be modified by adding higher amounts 

of nuclease inhibitors, reducing of some of the incubation steps and 

performing additional cleaning to remove protein and phenolic 

contamination. 

The genome sizes, ploidy and karyotypes for most fungi are 

unknown. It is generally assumed that zygomycetes are always haploid, 

making the assembly of their genome sequences easier than for diploid 

organisms. However, this still needs to be proven. Recent research 

and the discovery of genome duplication events in the zygomycota 

indicate that: 1) their genomes might be much bigger, on average, 

than those of other fungi; 2) whole genomes or significant parts of 

them might be duplicated which might complicate genome assembly 

[27]. For example, there are some indirect estimates of genome 

size for two entomophthoralean fungi: Basidiobolus (350-750 Mb) 

and  Entomophaga (800 Mb) [28]. This is substantially higher than 

the average genome size of other fungi whose genomes have been 

sequenced, which is usually between 10 and 60 Mb [29]. 

The quality of genome data for zygomycetes, as for fungi in 

general, needs improvement. None of the sequences obtained from 

zygomycetes are assigned to chromosomes (as in Saccharomyces 

cerevisiae and Aspergillus nidulans). As for many fungi, the number of 

chromosomes is unknown. For some of them, the nuclear chromatin 

is never condensed during nuclear division. Karyotyping methods 

based on pulsed field gel electrophoresis often fail to separate fungal 

chromosomes. For some species, different varieties might have 

significant variation in chromosome numbers, one example being 

Rhizopus arrhizus [30]. Only a few sequenced genome databases 

contain separated mitochondrial genomes, in most cases mitochondrial 

contigs and scaffolds are not annotated. Many zygomycetes have 

bacterial endosymbionts, consequently their genome projects are in 

fact metagenome projects!

All these reasons make zygomycete genome sequencing, assembly 

and annotation complicated and delay genomic studies. Despite this, 

the number of fungal sequencing projects for this group increases 

each year, partly because of progress in sequencing and bioinformatics 

techniques and ongoing reductions in sequencing costs. A number 

of laboratories are currently sequencing and annotating genomes 

(Timothy James, Rytas Vilgalys and Kerstin Voigt, personal 

communication). For example, there is an interesting project underway 

at Broad Institute to sequence all known zygomycetous pathogens, 

which have been recorded infecting humans and other mammals. 

Most of these are mucoralean fungi, but some entomophthoroid fungi 

are also included [31]. The results of these studies will advance our 

knowledge of the early diverging fungi and it would be great to see 

more work take place in this area.

The authors are really thankful to Renee Johansen for her help with 

the manuscript.

References

1.  James TY, Pelin A, Bonen L, Ahrendt S, Sain D et al. (2013) Shared signatures 

of parasitism and phylogenomics unite cryptomycota and microsporidia. Curr 

Biol 23: 1548-1553.

2.  (1997) Genome Portal version: 7.0.85.5b0f342. DOE Joint Genome Institute. 



Citation: Gryganskyi AP, Muszewska A (2014) Whole Genome Sequencing and the Zygomycota. Fungal Genom Biol 4: e116. doi

:10.4172/2165-

8056.1000e116

Page 3 of 3

Volume 4 • Issue 1 • 1000e116

Fungal Genom Biol

ISSN: 2165-8056  FGB, an open access journal 

3. (2005) Fungal Genomics Project. Concordia University. 

4. (2004) Mucorales database. Broad Institute. 

5. (2009) Genozymes project. In: Genome Canada GQ, and Genome Alberta,

editor: Concordia University - Centre for Structural and Functional Genomics. 

6.  Skiada A, Pagano L, Groll A, Zimmerli S, Dupont B, et al. (2011) Zygomycosis

in Europe: analysis of 230 cases accrued by the registry of the European

Confederation of Medical Mycology (ECMM) Working Group on Zygomycosis

between 2005 and 2007. Clin Microbiol Infect, 17: 1859-67. 

7. Lee SC, Li A, Calo S, Heitman J (2013) Calcineurin plays key roles in the

dimorphic transition and virulence of the human pathogenic zygomycete Mucor 

circinelloides. PLoS Pathog 9: e1003625.

8. Salt GA (1977) The Incidence of Root-Surface Fungi on Naturally Regenerated 

Picea sitchensis Seedlings in Southeast Alaska. Forestry 50: 113-115. 

9.  Davies JL, Ngeleka M, Wobeser GA (2010) Systemic infection with Mortierella

wolfii following abortion in a cow. Can Vet J 51: 1391-1393.

10. Wagner L, Stielow B, Hoffmann K, Petkovits T, Papp T, et al. (2013) A

comprehensive molecular phylogeny of the Mortierellales (Mortierellomycotina) 

based on nuclear ribosomal DNA. Persoonia 30: 77-93.

11. Smith ME, Gryganskyi A, Bonito G, Nouhra E, Moreno-Arroyo B, et al.

(2013) Phylogenetic analysis of the genus Modicella reveals an independent

evolutionary origin of sporocarp-forming fungi in the Mortierellales. Fungal

Genet Biol 61: 61-68. 

12. (2007) Origins of Multicellularity Database. Broad Institute. 

13. (2012) Mortierella elongata v1.0. DOE Joint Genome Institute.

14. Wang L, Chen W, Feng Y, Ren Y, Gu Z, et al. (2011) Genome characterization 

of the oleaginous fungus Mortierella alpina. PLoS One 6: e28319.

15. (2012) Conidiobolus coronatus NRRL28638 v1.0. DOE Joint Genome Institute. 

16. Spatafora J, Stajich JE (2012) 1000 Fungal Genomes Project. Wordpress. 

17. Gryganskyi AP, Humber RA, Smith ME, Hodge K, Huang B, et al. (2013)

Phylogenetic lineages in Entomophthoromycota. Persoonia 30: 94-105.

18. Gryganskyi AP, Humber RA, Smith ME, Miadlikowska J, Wu S, et al. (2012)

Molecular phylogeny of the Entomophthoromycota. Mol Phylogenet Evol 65: 

682-694.

19. Vikram  HR,  Smilack  JD,  Leighton  JA,  Crowell  MD,  De  Petris  G  (2012) 

Emergence of gastrointestinal basidiobolomycosis in the United States, with a

review of worldwide cases. Clin Infect Dis 54: 1685-1691.

20. Humber RA (2008) Evolution of entomopathogenicity in fungi. J Invertebr

Pathol 98: 262-266.

21. Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification 

of endomycorrhizal fungi and coincidence with vascular land plants. Letters to

Nature 363: 67-69. 

22. Krings M, Taylor TN, Dotzler N (2013) Fossil evidence of the zygomycetous

fungi Persoonia 30: 1-10.

23. (2008) Glomus intraradices DB v. 2.0. INRA.

24. Redecker D, Raab P (2006) Phylogeny of the glomeromycota (arbuscular

mycorrhizal fungi): recent developments and new gene markers. Mycologia 98: 

885-895.

25. Blaszkowski, Renker C, Buscot F (2006) Glomus drummondii and G. walkeri,

two new species of arbuscular mycorrhizal fungi (Glomeromycota). Mycol Res

110: 555-566.

26. (2012) Coemansia reversa NRRL 1564 v1.0. DOE Joint Genome Institute. 

27. Ma LJ, Ibrahim AS, Skory C, Grabherr MG, Burger G, et al. (2009) Genomic

analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome 

duplication. PLoS Genet 5: e1000549.

28. Henk DA, Fisher MC (2012) The gut fungus Basidiobolus ranarum has a

large genome and different copy numbers of putatively functionally redundant

elongation factor genes. PLoS One 7: e31268.

29. Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, et al. (2007) Eukaryotic 

genome size databases. Nucleic Acids Res 35: 332-338.

30. Min B-R, Lee TJ, Choi Y-K (1982) Chromosomal Studies on the genus of

Rhizopus. Korean Journal of Microbiology 20: 134-146. 

31. Bruno  VM  (2009)  Comparative  Genome  Analysis  of  Mucormycoses-causing 

Strains Of From Clinical Settings. Genomic Sequencing Center for Infectious

Diseases, University of Maryland.



Citation:  Gryganskyi AP, Muszewska A (2014) Whole Genome Sequencing 

and the Zygomycota. Fungal Genom Biol 4: e116. doi

:10.4172/2165-

8056.1000e116



Document Outline

  • Title
  • Corresponding author
  • Mucoromycotina 
  • Mortierellomycotina 
  • Entomophthoromycota 
  • Glomeromycota 
  • Kickxellomycotina and Zoopagomycotina 
  • Common Problems in Zygomycete Sequencing  
  • References

Yüklə 68,01 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə