Apollonius’ Problem



Yüklə 0,85 Mb.
Pdf görüntüsü
tarix17.11.2018
ölçüsü0,85 Mb.
#80158


AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH 

VOL. 3 NO. 1 (2004)

 

 

 

 

Apollonius’ Problem: A Study of Solutions and 

Their Connections 

 

David Gisch and Jason M. Ribando 



Department of Mathematics 

University Northern Iowa 

Cedar Falls, Iowa 50614-0506 USA 

 

Received: August 15, 2003 



Accepted: February 29, 2004 

 

ABSTRACT 



 

In Tangencies Apollonius of Perga showed how to construct a circle that is tangent to three given 

circles.  More generally, Apollonius' problem asks to construct the circle which is tangent to any 

three objects that may be any combination of points, lines, and circles.  The case when all three 

objects are circles is the most complicated case since up to eight solution circles are possible 

depending on the arrangement of the given circles.  Within the last two centuries, solutions have 

been given by J. D. Gergonne in 1816, by Frederick Soddy in 1936, and most recently by David 

Eppstein in 2001.  In this report, we illustrate the solution using the geometry software 

Cinderella™, survey some connections among the three solutions, and provide a framework for 

further study. 

 

I. INTRODUCTION 



 

Apollonius of Perga was known as 

'The Great Geometer'.  He should not be 

confused with other Greek scholars named 

Apollonius, for it was a common name.  

Little is known of his life except that he was 

born in Perga, Pamphylia, which today is 

known as Murtina, or Murtana, and is now in 

Antalya, Turkey.  The years 262 to 190 B.C. 

have been suggested for his life [1-3].  It is 

commonly believed that Apollonius went to 

Alexandria where he studied under the 

followers of Euclid and possibly taught there 

later. 


This paper focuses on a problem 

solved by Apollonius in his book 



Tangencies.  Apollonius’ works have had a 

great influence on the development of 

mathematics [4].  In particular, his famous 

book  Conics introduced terms which are 

familiar to us today such as parabola, ellipse 

and hyperbola. In Book IV of the Elements

Euclid details how to construct a circle 

tangent to three sides of a given triangle 

(Proposition 4) and how to construct a circle 

containing three noncollinear points 

(Proposition 5) [5, p. 182].  The latter 

construction is accomplished by finding the 

intersection point of the perpendicular 

bisectors of any two sides of the triangle 

with the three given points as vertices.  In 

Tangencies Apollonius poses a 

generalization to Euclid’s two propositions: 

given any three points, lines or circles in the 

plane, construct a circle which contains the 

points and is tangent to the lines and circles.  

Apollonius enumerated the ten combinations 

of points, lines and circles and solved the 

cases not already solved by Euclid [6, 

p.182].  The case when all three objects are 

circles is the most complicated of the ten 

cases since up to eight solution circles are 

possible depending on the arrangement of 

the circles (see Figure 1). 

Since no copy of Apollonius’ 



Tangencies has survived the ages, Pappus 

of Alexandria deserves credit for eternally 

linking Apollonius’ name with the tangents 

problem.  Pappus, who lived some five 

centuries after Apollonius and is known 

 

15 




AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH 

VOL. 3 NO. 1 (2004)

 

 

Figure 1.   Eight solution circles to Apollonius’ problem. 



 

 

mostly for his encyclopedic recording and 



commenting of Greek mathematics, wrote a 

“Treasury of Analysis” in Book VII of his 



Mathematical Collections dedicated to works 

of Euclid, Aristaeus, and Apollonius.  Here 

he succinctly states Apollonius’ problem, 

acknowledges the ten cases, and provides a 

compass and straightedge solution for at 

least one solution circle [6, p. 182]. 

Excepting Arabic reconstructions of 

Apollonius’ works, Apollonius’ problem lay 

dormant in the literature until François Viète 

(1540-1603) restored the Tangencies in 

1603. Having unveiled Apollonius’ solution, 

Viète challenged Adrianus Romanus to draw 

a circle tangent to three given circles but 

was disappointed by Romanus’ use of 

conics. A century later Newton also went 

beyond compass and straightedge solutions 

by employing hyperbolas [7].  Agreeing with 

Viète’s preference for compass and 

straightedge solutions, we are motivated to 

include three related constructions under the 

same cover: the Euler-Gergonne-Soddy 

triangle, which contains the centers of the 

two solution circles in the special case when 

the circles are mutually tangent or “kissing;” 

a solution found by David Eppstein in 2001 

for the same special case; and an 

adaptation to Gergonne’s analytic solution 

which constructs all eight solution circles in 

the general case for three circles in generic 

position.  We conclude with some 

connections among the three solutions and 

provide a framework for further study 

beyond the scope of this paper. 

 

II. THE 



EULER-GERGONNE-SODDY 

TRIANGLE OF A TRIANGLE 

 

A special case of Apollonius' 



problem is known today as the three coins 

problem, or kissing coins  problem.    In  this 

variant, the three circles, of possibly different 

radii, are taken to be mutually tangent.  

There are two solutions to this special case 

of Apollonius’ problem: a small circle where 

all three given circles are externally tangent, 

and a large circle where the three given 

circles are internally tangent.  In 1643 Renè 

Descartes sent a letter to Princess Elisabeth 

of Bohemia in which he provided a solution 

to this special case of Apollonius’ problem.  

His solution became known as Descartes’ 

circle theorem. Philip Beecroft, an English 

amateur mathematician, rediscovered 

Descartes’ circle theorem in 1842.  Then it 

was discovered again in 1936 by Frederick 

Soddy (1877-1956), who had won a Nobel 

Prize in 1921 for his discovery of isotopes 

[8].  Soddy expressed the theorem in the 

form of a poem, "The Kiss Precise," which 

was published in the journal Nature  and is 

included below.  It may have been the flavor 

of the added poem that set Soddy apart 

from his predecessors, as the two circles are 

known today as the inner  and outer Soddy 



circles.  Additionally, Soddy extended the 

theorem to the analogous formula for six 

 

16 



AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH 

VOL. 3 NO. 1 (2004)

 

spheres in three dimensions [9, Soddy 



Circles]. 

Though Soddy provided an analytic 

solution to the kissing coins problem, we do 

not know whether he constructed a synthetic 

solution using compass and straightedge.  

For our part we find compass and 

straightedge solutions easier to understand 

than their analytic counterparts.  This 

section is devoted to the Euler-Gergonne-

Soddy triangle (EGST).  Though it does not 

provide a solution to the kissing coins 

problem, it does provide a unique insight to 

finding the Soddy circles.  Many of the 

connections between the EGST and the 

Soddy circles solution to the kissing coins 

problem were inspired by Oldknow’s article 

[8], which uses trilinear coordinates, 

harmonic ranges, and parameterizations of 

lines to construct the EGST.  It is interesting 

to note that Oldknow attributes many of his 

investigations to the use of geometric 

software packages, a current trend among 

geometry researchers. 

 

As noted already, the kissing coins 



problem is the special case of Apollonius’ 

problem where all three circles are mutually 

tangent.  In this arrangement there are two 

solution circles, the inner and outer Soddy 

circles as shown in Figure 2.  There are two 

questions of interest that arise from this 

special case: what are the radii of the Soddy 

circles and where are their centers located? 

  As a partial answer to the latter 

question,  the  Soddy  centers  lie on the line 



 

 

 

 

 

Figure 2.  Soddy circles. 



 

The Kiss Precise 

For pairs of lips to kiss maybe 

Involves no trigonometry. 

'Tis not so when four circles kiss 

Each one the other three. 

To bring this off the four must be 

As three in one or one in three. 

If one in three, beyond a doubt 

Each gets three kisses from without. 

If three in one, then is that one 

Thrice kissed internally. 

Four circles to the kissing come. 

The smaller are the benter. 

The bend is just the inverse of 

The distance from the center. 

Though their intrigue left Euclid dumb, 

There's now no need for rule of thumb. 

Since zero bend's a dead straight line 

And concave bends have minus sign, 

*The sum of the squares of all four bends 

Is half the square of their sum.* 

To spy out spherical affairs 

An oscular surveyor 

Might find the task laborious, 

The sphere is much the gayer, 

And now besides the pair of pairs 

A fifth sphere in the kissing shares. 

Yet, signs and zero as before, 

For each to kiss the other four 

*The square of the sum of all five bends 

Is thrice the sum of their squares.* 

Frederick Soddy (Nobel Prize, Chemistry, 

1921) Nature, June 20, 1936 [10]. 

 

determined by the incenter and Gergonne 



point of the reference triangle.  This line is 

known as the Soddy line and it contains one 

of the sides of the EGST.  Given three 

vertices of a triangle, we show how to 

construct its EGST.  The reader may want to 

refer to the Appendix for a glossary of 

geometric terms involved in this 

construction. 

 

We start with the Euler line since it 



is the easiest to construct.  Given a 

reference triangle, find the circumcenter as 

the intersection of the perpendicular 

bisectors and the orthocenter as the 

intersection of the altitudes.  These two 

points determine the Euler line, which also 

 

17 



AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH 

VOL. 3 NO. 1 (2004)

 

 

 



 

Figure 3.  The Gergonne point, incenter, incircle and Soddy line. 

 

 



contains the triangle’s centroid (the 

intersection of the medians).  The Euler line 

also contains a number of other important 

triangle centers including the center of the 



nine-point circle

 

The Soddy line is determined by the 



incenter, where the angle bisectors coincide, 

and the Gergonne point.  The incenter is the 

center of the unique circle that is internally 

tangent to its reference triangle at three 

points.  These three points are called the 

contact points, and together they form the 

contact triangle of the reference triangle.  

The Gergonne point can most easily be 

found as follows: erect perpendiculars 

containing the incenter from each side of the 

reference triangle.  These perpendiculars 

meet the reference triangle at the contact 

points.  The lines containing the contact 

points and the opposite vertices on the 

reference triangle coincide at the Gergonne 

point (see Figure 3). 

 

Importantly, the contact points have 



special meaning to the kissing coins 

problem.  Given three noncollinear points, 

one can uniquely construct the three 

mutually tangent circles centered at these 

points.  Construct the reference triangle with 

these vertices and its contact triangle, as 

described above; the mutually tangent 

circles are centered at the vertices of the 

reference triangle and contain the nearby 

vertices of the contact triangle!  Hence, 

three non-collinear points uniquely 

determine the radii of the kissing coins. 

To construct the Gergonne line, one 

must understand the notion of triangles in 



perspective.  The idea of perspective was 

introduced in the Renaissance to create the 

idea of depth in art.  The principle of 

perspective is that all lines meet at a point, 

thus providing depth.  A well-known example 

of this is Leonardo da Vinci’s Last Supper, 

where all the lines forming the walls, ceiling 

and edges of the table meet at a point of 

perspective, which happens to be the head 

of Christ. 

The idea of perspective objects can 

be applied in geometry in relation to 

triangles.  The two triangles ∆ABC and 

A'B'C' in Figure 4 are perspective from a 



line since the extensions of their three pairs 

of corresponding sides meet in collinear 

points  X,  Y, and Z.  The line joining these 

points is called the perspectrix.  It can also 

be said that two triangles are perspective 

from a point if their three pairs of lines 

joining their corresponding sides meet at a 

point of concurrence O. This point is called 

the 


perspector

perspective center

homology center, or pole [9, Perspective 

Triangles]. 

In the kissing coins problem the 

triangle formed by the centers of the circles 

and its contact triangle are perspective 

triangles.  The perspector and the 

 

18 



AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH 

VOL. 3 NO. 1 (2004)

 

 

 



 

Figure 4.  Triangles in perspective: Triangles ∆ABC and ∆A'B'C' are perspective from a line since 

the extensions of their three pairs of corresponding sides meet in collinear points XY, and Z

 

 

perspectrix of these two triangles are called 



the Gergonne point and Gergonne line, 

respectively, as shown in Figure 5. 

The union of the Euler line, Soddy 

line and Gergonne line form the EGST, as 

seen in Figure 6.  The vertices of EGST are 

known as the de Longchamps point,  Evans 



point and Fletcher point.  The Soddy line 

and Gergonne line always form a right angle 

at the Fletcher point [8, p. 328].  As 

mentioned previously the Soddy points, 

being the centers of the inner and outer 

Soddy circles, lie on the Soddy line and form 

a harmonic range with the incenter and 

Gergonne point [8, p. 326].  Further, the 

radii of both Soddy circles can be expressed 

in terms of ratios of the radii of the three 

given circles and the incircle.  We will see in 

the next section that two of the solution 

circles to Apollonius’ problem are centered 

on the Soddy line of the EGST.  

 

 

 



 

 

Figure 5.  Gergonne point and line. 

 

19 




AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH 

VOL. 3 NO. 1 (2004)

 

 

 



 

Figure 6.  Euler-Gergonne-Soddy triangle. 

 

 



III. 

THE EPPSTEIN SOLUTION 

 

David Eppstein, a professor in the 



Department of Information and Computer 

Science at the University of California at 

Irvine, is a researcher in the areas of 

computational geometry and graph 

algorithms.  Eppstein is also the founder and 

author of the popular Geometry Junkyard 

website.  On this site Eppstein details a 

solution, discovered by Eppstein himself, 

that constructs Frederick Soddy’s circles 

with a compass and straightedge.  The basis 

of Eppstein’s solution comes from an article 

in The American Mathematical Monthly [13].  

In this article Eppstein proves that three 

lines through opposite points of tangency of 

any four mutually tangent spheres in three-

space are coincident.  A resulting corollary 

from this lemma is that three lines through 

opposite points of tangency of any four 

mutually tangent circles in the plane are 

coincident.   

Eppstein’s solution is as follows 

(see Figure 7a): form a triangle connecting 

the three circle centers and drop a 

perpendicular line from each center to the 

opposite triangle edge. Each of these lines 

cuts its circle at two points.  Seen in Figure 

7b, construct a line from each cut point to 

the point of tangency of the other two 

circles. These lines cut their circles in two 

more points, yielding six total, which are the 

points of tangency of the Soddy circles. 

Once these six points are known, the Soddy 

circles’ centers are easily found to lie on the 

line determined by the incenter and 

Gergonne point, a.k.a. the Soddy line. 

In Eppstein’s solution, one may 

notice that there are two sets of three lines, 

as seen in Figure 7b, each intersecting at a 

common point.  This is the result of the 

corollary from Eppstein’s article mentioned 

above.  Eppstein points out that despite their 

simplicity of definition and the large amount 

of study into triangle geometry, these two 

points do not appear in the list of over 1,000 

known triangle centers collected by Clark 

Kimberling and Peter Yff [13, p. 65].  Thus, 

these two points have become known as the 

Eppstein points and, remarkably, they lie on 

the Soddy line and form a harmonic range 

with the Gergonne point and incenter [8, p. 

327]. 

 

 



 

 

 



 

 

 



Figure 7a. The Eppstein solution. 

 

 



 

 

 



 

 

 



Figure 7b. Soddy circle and Eppstein 

points. 


 

 

 



20 


AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH 

VOL. 3 NO. 1 (2004)

 

 

 



 

Figure 8.  Inversion of line l through circle C. 

 

 



IV. 

THE GERGONNE SOLUTION 

 

Joseph Diaz Gergonne was born in 



France in 1771 and died there in 1859.  He 

spent most of his youth serving in the 

military until 1795.  Afterwards, he began his 

mathematical study, which spawned a 

number of mathematical ideas but mostly 

focused on the area of geometry.  Gergonne 

is well known for creating the journal 

officially called the Annales de 



Mathématique Pures et Appliquées but 

became known as Annales de Gergonne 

[14, p. 226].  His journal featured such 

prominent mathematicians as Jakob Steiner 

and Evariste Galois.  Mentioned earlier are a 

few of the results of his work in the solution 

of the Soddy circles.  Not only did Gergonne 

supply all eight solution circles to Apollonius’ 

problem, he also introduced the word polar 

as it applies to inversion geometry.   

Inversion geometry deals with 

transformations of the plane that leave a 

given circle fixed while taking its interior 

points to its exterior and vice versa.  Not just 

the subject of advanced Euclidean 

geometry, inversion geometry arises in 

hyperbolic geometry and conformal 

mappings of the complex plane.  While the 

details and intricacies of inversion geometry 

are beyond the scope of this paper, we do 

make use of the fact that we can invert any 

point through a given circle using compass 

and straightedge constructions [15]. 

For our purposes, we need the 

inversion geometry fact that a circle 

inversion through the circle C of radius r 

centered O in Figure 8 takes the line l to the 

circle with diameter 



OQ

.  In this 

arrangement P and Q are on the line 

perpendicular to l containing O, and 

(OP)(OQ) = r

2

.  Points P and Q are easily 



constructed with compass and straightedge, 

and point Q is called the inversion pole of 

the line l.  

Gergonne’s solution requires 

constructing the dilation points for each pair 

of circles [16].  The dilation points of a pair 

of circles are the two points of central 

similarity about which one circle can be 

dilated (or contracted) to the other.  As there 

are three pairs of circles with two dilation 

points each, this process yields six points.  

These lie three by three on four lines, 

forming a four-line geometry, as illustrated in 

Figure 9. 

Determine the inversion poles of 

one of the dilation lines with respect to each 

of the three circles, as in Figure 10a, and 

connect the inversion poles with the radical 



center, as shown in Figure 10b.  The radical 

center is the intersection of the three radical 



axes; the radical axis of two circles is the 

line  that  contains  the  center  points  of  all 

 

 

 



 

Figure 9. Dilation points and lines 

 

 



 

 

Figure 10a. Inversion poles 

 

21 




AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH 

VOL. 3 NO. 1 (2004)

 

 

 



 

 

Figure 10b. Tangent points.

 

 

 



 

 

 



Figure 11a. Tangent circle. 

 

 



 

 

 



Figure 11b.  Another tangent circle. 

that are orthogonal to both of the given 

circles.  In this case, each line containing the 

radical center and an inversion pole 

intersects its respective circle at two points. 

The center of the upper circle in 

Figure 10b is alone on one side of the 

dilation line formed by the dilation points. On 

that circle pick the intersection point furthest 

from the radical center. On the other two 

circles pick the near intersection points. 

These three points are the tangent points for 

the solution circle shown in Figure 11a. The 

other three intersection points are the 

tangent points for another solution circle, 

shown in Figure 11b. 

This construction sequence yields 

all four lines formed from the dilation points, 

and for each line produces at most two 

solution circles.  Thus, all eight solution 

circles can be constructed.  We should 

mention that this process, while not terribly 

complicated, does require careful record 

keeping.  When constructing Gergonne’s 

solution, we used the interactive geometry 

software program Cinderella™. 

 

Cinderella™ allows one to hide lines and 



circles.  Without this capability we do not 

believe that we could have constructed the 

solution.  As pictured below in Figure 12, the 

solution becomes very cluttered when every 

line and circle is visible.  We are truly 

impressed that Gergonne, or anyone before 

the computer age, could have the patience 

to perform this feat. 

 

V. CONNECTIONS 



AND 

EXTENSIONS 

 

In this section we observe some 



connections relating the EGST, Eppstein’s 

solution and Gergonne’s solution and 

suggest some routes for further study.   

One of the most intriguing properties 

that we have found is the relation of the 

Gergonne line and the Gergonne solution.  

Since both share the name of J. D. 

Gergonne it might come as no surprise that 

they are related, but we do not consider this 

fact to be obvious.  In Gergonne’s solution 

one may recall that a line formed by the 

three outer dilation points, which we call the 

outer dilation line, is used to find two 

solution circles.  In the special case where 

all three circles are mutually tangent, the 

Gergonne line and the outer dilation line 

coincide.  Also, when the given circles are

 

22 




AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH 

VOL. 3 NO. 1 (2004)

 

 

 



 

Figure 12.  The Complete Gergonne Solution. 

 

 



mutually tangent, the two solution circles 

formed by the outer dilation line are the 

Soddy circles.  Thus, one begins to see the 

importance of the Euler-Gergonne-Soddy 

triangle and the role it plays in Apollonius’ 

problem.  Furthermore, if the three given 

circles are mutually tangent, the incenter of 

the reference triangle coincides with the 

radical center, and the radical axes that 

define the radical center are the 

perpendicular lines from the triangle sides to 

the incenter. 

Until now we have allowed the 

reader to believe that Eppstein’s solution to 

the kissing coins problem only solves for two 

of the solution circles whereas Gergonne’s 

solution finds all eight solution circles to the 

general Apollonius’ problem.  The observant 

reader should ask: “Where are the 

remaining six tangent circles in the kissing 

coins arrangement?”  It turns out that each 

of the three given circles represents two 

solutions.  This can best be observed using 

geometry software to execute Gergonne’s 

solution and arranging the three given 

circles to be nearly tangent.  One will 

observe that the coins, now separated by a 

small distance from each other, are each 

internally tangent to two solution circles just 

slightly larger than the coin itself. 

As another special case of three 

circles in general position, consider what 

happens when the radius of one of the given 

circles tends toward zero.  Here, the eight 

solution circles collapse to four, and they do 

so in pairs.  When the radius of a second 

circle decreases, the four solution circles 

collapse to two.  Finally, when the radius of 

the third circle shrinks, the two solutions 

collapse to one. Figure 13 illustrates this 

nicely for a sequence of circles whose radii 

tend toward zero.  Hence, Euclid’s 

Proposition 5, Book IV, for finding the 

circumcenter of a triangle should really be 

viewed as a very special case of Gergonne’s 

solution to Apollonius’ problem! 

 

As yet another special case, 



consider when the given circles are the 

excircles of a triangle.  Here, the vertices of 

the triangle are the inner dilation points for 

the pairs of circles.  Surprisingly, the lines 

extending the triangle sides are three of the 

Apollonius solutions; they are limiting cases 

as the radii of three of the solution circles 

tend to infinity!  Feuerbach’s Theorem 

guarantees that the nine-point circle is

 

23 




AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH 

VOL. 3 NO. 1 (2004)

 

 

 



 

Figure 13.  Shrinking circles and collapsing solutions. 

 

 



simultaneously tangent to the three 

excircles, providing a fourth solution circle 

[17,p. 46 ].  This solution is analogous to the 

inner Soddy circle solution to the kissing 

coins problem in that the three excircles are 

externally tangent to the nine-point circle.  A 

fifth solution circle lies so that the excircles 

are internally tangent, and the remaining 

three solution circles each have one excircle 

internally tangent and the other two excircles 

externally tangent. 

With regard to further study, the 

interested reader may wish to pursue the 

following topics. 

In Apollonius’ problem the three 

given objects are taken from among circles, 

points and lines.  The latter two objects 

should be thought of as limiting cases when 

the radius of a circle approaches zero or 

infinity.  Gergonne’s solution only applies to 

the case when all three objects are circles 

since circle inversion is used. Rather than 

use three circles, one may wish to examine 

all combinations of points, lines and circles, 

decide for which configurations all eight 

solution circles appear, and use geometry 

software to construct solution circles.  For 

example, no solution circles exist in the case 

of three parallel lines, and two solution 

circles exist for two parallel lines cut by a 

transversal.  Are there any connections to 

Gergonne’s solution? 

It is also worth exploring the special 

case of three circles centered at points that 

are the vertices of an isosceles or an 

equilateral triangle.  If at least two of the 

three sides of the reference triangle are 

congruent, the Euler line and the Soddy line 

coincide, so the EGST is degenerate. In the 

context of Eppstein’s solution, this 

corresponds to kissing coins with equal radii. 

Given three noncollinear points, 

consider all sets of three non-overlapping 

circles centered at these points. What are 

the possible locations for the centers of the 

tangency circles for which the three circles 

are either all internally tangent or all 

externally tangent?  The kissing coins 

problem is the special case when the three 

circles centered at the triangle vertices are 

tangent to each other.  In this instance, 

perhaps the inner and outer Soddy centers 

that solve this problem are known triangle 

centers. 

Finally, as noted in section 2, the EGST 

is always a right triangle.  A benefit of 

Cinderella™ is the ability to dynamically 

move elements while preserving the incident 

relations among points, lines and circles.  

With this capability the vertices of the 

original triangle can be moved freely, and 

we have observed that the EGST always 

appears to be long and skinny (see Figure 

6).  The maximum value of the angle 

between the Euler line and Gergonne line is 

90 degrees, but what is the smallest 

possible value of this angle? 

 

 



REFERENCES 

 

1. Boyer, C. 



B. A History of Mathematics. 

New York: John Wiley & Sons, 1968. 

2.  Boyer, C. B.; revised by Merzbach, Uta. 

A History of Mathematics. New York: 

John Wiley & Sons, 1989. 

3. Cajori,  Florian.  A History of 

Mathematics. New York: Chelsea 

Publishing Company, 1980. 

4. Gow, James. A Short History of Greek 

Mathematics. New York: G. E. Stechert 

& Co., 1923. 

 

24 



AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH 

VOL. 3 NO. 1 (2004)

 

5.  Joyce, David E., “Euclid’s Elements.” 



http://aleph0.clarku.edu/~djoyce/java/ele

ments/elements.html. 

6. Heath, Thomas. A History of Greek 

Mathematics. New York: Oxford 

University Press, Vol. 2, 1921. 

7.  Court, N. A. “Historically Speaking, - 

The Problem of Apollonius.” The 



Mathematics Teacher. October 1961, 

pp. 444-452. 

8. Oldknow, A. “The Euler-Gergonne-

Soddy Triangle of a Triangle.” The 



American Mathematical Monthly 103 

(1996), pp. 319-329. 

9. Weisstein, Eric W.  Eric Weisstein’s 

World of Mathematics

http://mathworld.wolfram.com. 

10. Soddy, F. “The Kiss Precise.” Nature 

137 (1936), p. 1021. 

11. 

Eppstein, David. “Tangencies: 



Apollonian Circles.” Geometry Junkyard

www.ics.uci.edu/~eppstein/junkyard/tan

gencies/apollonian.html. 

12. 


Bogomolny, Alexander. “Apollonius 

Problem: What is it?” Cut The Knot! 

www.cut-the-

knot.com/Curriculum/Geometry/Apolloni

us.shtml. 

13. Eppstein, David. “Tangent Spheres and 

Triangle Centers.” The American 

Mathematical Monthly 108 (2001), pp. 

63-66. 


14. 

Boyer, C. B. History of Analytic 



Geometry. New York: Scripta 

Mathematica, 1956. 

15. Goodman-Strauss, Chaim. “Compass 

and Straightedge in the Poincare Disk.” 



The American Mathematical Monthly 

108 (2001), pp. 38-49. 

16. 

Kunkel, Paul. “Tangent Circles.” 



http://whistleralley.com/tangents/tangent

s.htm. 


17. Baragar, Arthur. A Survey of Classical 

and Modern Geometries with Computer 

Activities. New Jersey: Prentice-Hall Inc. 

2001. 


 

APPENDIX: Glossary of Terms

 

 

Points and Centers 



Centroid 

The intersection of the medians 

Circumcenter The 

intersection 

of the perpendicular bisectors 

Incenter 

Intersection of the angle bisectors 

Orthocenter 

Intersection of the altitudes 

Gergonne point 

Perspector of a reference triangle and its contact triangle 

Evans point 

Intersection of the Euler and Soddy lines 

Fletcher point 

Intersection of the Soddy and Gergonne lines 

De Longchamps 

Intersection of the Euler and Gergonne lines 

 

Lines 

Euler line 

Defined by the circumcenter and orthocenter; also contains the 

centroid and nine-point center 

Gergonne line 

Line of perspective for a reference triangle and its contact triangle 

Soddy line 

Defined by the incenter and Gergonne point; also contains the 

Eppstein and Soddy points 

 

Circles 

Circumcircle 

Unique circle containing a triangle’s vertices 

Incircle 

Unique circle internally tangent to all three triangle sides 

Nine-point circle 

Contains  side  midpoints, feet of altitudes, and midpoints of 

segments joining the orthocenter to the vertices 

Inner Soddy circle 

Circle that is internally tangent to the kissing coins 

Outer Soddy circle 

Circle that is externally tangent to the kissing coins 

 

Triangles 

Contact triangle 

Defined by the points of tangency of reference triangle and its 

incircle; vertices are where the kissing coins touch 

Euler-Gergonne-Soddy 

triangle 

Triangle formed by the Euler, Gergonne and Soddy lines 

 

25 




AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH 

VOL. 3 NO. 1 (2004)



 

 

26 



 

 

Document Outline

  • Apollonius’ Problem: A Study of Solutions and The
      • David Gisch and Jason M. Ribando
        • University Northern Iowa
      • The Kiss Precise

Yüklə 0,85 Mb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə