Asosiy elementlar



Yüklə 124,56 Kb.
səhifə6/8
tarix28.11.2023
ölçüsü124,56 Kb.
#133521
1   2   3   4   5   6   7   8
ASOSIY ELEMENTLAR

Lagranj tenglamasi


Lagranj tenglamasi deb




y=x ( )+( ) (3.9)

ko’rinishdagi tenglamaga aytiladi.


Bu tenglama ham parametr kiritish bilan sodda integrallanadi:
= deb,
y=x()+()
tenglamani hosil qilamiz. Bu tenglamani x ga nisbatan differensiallab

(3.10)
Hosil bo’lgan tenglama x() va dx/d ga nisbatan chiziqli tenglamadir. Uni yechib F(x, ,c)=0 ni hosil qilamiz. Demak, Lagranj tenglamasini yechimi

parametrik ko’rinishda bo’ladi.

TO’LA DIFFERENSIAL TENGLAMA. HOSILAGA NISBATAN YECHILMAGAN BIRINCHI TARTIBLI TENGLAMALAR


1- ta’rif Agar


M(x,y)dy+N(x,y)dy=0 (3.1)
tenglamada M(x,y), N(x,y) funksiyalar uzluksiz, differensiallanuvchi bo’lsa, va
M/ y= N/ x (3.2)
munosabat bajarilsa, (3.1) to’la differensial tenglama deyiladi, bunda M/ y, N/ x - uzluksiz funksiyalar.
(3.1) tenglamani integrallashga o’tamiz.
(3.1) tenglamaning chap tomoni biror U(x,y) funksiyaning to’la differensiali bo’lsin deb faraz qilamiz, ya’ni

M(x,y)dx+N(x,y)dy=dU(x,y), dU/dx =( U/ x)dx+( U/ y)dy


u holda

M= U/ x, N= U/ y (3.3)
U/ x=M munosabatdan

ni topamiz. Bu tenglikni har ikki tomonini u bo’yicha differensiallab natijani N (x,y) ga tenglaymiz:



bo’lgani uchun

yoki

Demak

Shunday qilib
ko’rinishda bo’ladi.
dU=0 bo’lganda , U(x,y)=C.
Demak, umumiy integral
(3.4)


Integrallovchi ko’paytuvchi

(3.1) tenglamada (3.2) munosabat bajarilmasin. Ba’zan shunday funksiyani tanlab olish mumkinki, (3.1) tenglamani shu funksiyaga ko’paytirganda tenglamaning chap tomoni biror funksiyaning to’la differensialini ifodalaydi. Bunday tanlangan (x,y) funksiyaga (3.1) tenglamaning integrallovchi ko’paytuvchisi deyiladi.


(x,y) ni topish usuli: (3.1) ni (x,y) ga ko’paytiramiz

Mdx+Ndy=0


Keyingi tenglama to’la differensialli tenglama bo’lishi uchun (3.2) munosabat bajarilishi zarur va etarli:






Oxirgi tenglamaning har ikki qismini  ga bo’lib


(3.5)

munosabatni hosil qilamiz. (3.5) tenglamani qanoatlantiruvchi har qanday (x,y) funksiya (3.1) tenglamaning integrallovchi ko’paytuvchisi bo’ladi. (3.5) tenglama (x,y) funksiyaga nisbatan xususiy hosilali tanglama.


Ma’lum shartlar bajarilganda bu tenglama yechimga ega. Lekin umumiy holda (3.5) ni yechish (3.1) ni integrallashga qaraganda ancha murakkab. Ba’zi bir xususiy hollardagina (x,y) ni topish mumkin:

  1. (x,y) faqat y o’zgaruvchiga bog’liq bo’lsin: =(y)

U holda



oddiy differensial tenglama hosil bo’ladi.


Bu tenglamani yechib ni topamiz.

Yüklə 124,56 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə