Author version



Yüklə 126,69 Kb.
səhifə3/3
tarix26.04.2018
ölçüsü126,69 Kb.
#40267
1   2   3

Devos KM, Brown JKM, Bennetzen JL. 2002. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075-1079

Dhillon SS, Rake AV, Miksche JP. 1980. Reassociation kinetics and cytophotometric characterization of peanut (Arachis hypogaea L.) DNA. Plant Physiol 65(6):1121-1127

Fávero AP, Simpson CE, Valls FMJ, Velo NA. 2006. Study of evolution of cultivated peanut trough crossability studies among Arachis ipaënsis, A duranensis and A hypogaea. Crop Sci 46:1546 - 1552

Ferguson ME, Burow MD, Schulze SR, Bramel PJ, Paterson AH, Kresovich S, Mitchell S. 2004. Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor ApplGenet 108:1064-1070

Fernandez A, Krapovickas A. 1994. Cromosomas y evolucion en Arachis (Leguminosae). Bonplandia 8:187 - 200

Feschotte C, Jiang N, Wessler SR. 2002. Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3 (5):329-341

Foncéka D, Hodo-Abalo T, Rivallan R, Faye I, Sall M, Ndoye O, Favero A, Bertioli DJ, Glaszmann J-C, Courtois B, Rami J-F. 2009. Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biol 9(1):103

Fredslund J, Madsen L, Hougaard B, Nielsen A, Bertioli D, Sandal N, Stougaard J, Schauser L. 2006. A general pipeline for the development of anchor markers for comparative genomics in plants. BMC Genomics 7 (1):207

Freitas FO. 2004. Ampliação da área de ocorrência da espécie Arachis villosulicarpa Embrapa Comunicado Técnico place and country?

Froenicke L, Beitel C, Pandey MK, Upadhyaya HD, Moretzsohn MC, Guimaraes PM, Leal-Bertioli SCM, Varshney RK, Bertioli DJ, Michelmore R (2012) Applications of genome sequencing for peanut improvement. In: Plant Anim Genome No? Conf, San Diego, CA, USA, p?.

Froenicke L, Pandey M, Upadhyaya H, Moretzsohn MC, Guimaraes PM, Leal-Bertioli SCM, Varshney RK, Bertioli DJ, Michelmore RW Towards ultra-dense genetic maps of peanut generated by sequencing diploid and tetraploid RIL populations and a peanut diversity panel. In: 5th Int Conf of the Peanut Research Community on Advances in Arachis through Genomics and Biotechnology (AAGB-2011), Brasilia, Brazil, 13 -15 June 2011. Embrapa, Brazil, p 57

Gepts P. 2003. Ten thousand years of crop evolution. In: Chrispeels M, Sadava D (eds) Plants, Genes, and Crop Biotechnology. Jones and Bartlett Publishers, Sudbury, MA, USA, pp 328-359

Gimenes MA, Hoshino AA, Barbosa AVG, Palmieri DA, Lopes CR. 2007. Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea). BMC Plant Biol 7:9

Gimenes MA, Lopes CR, Galgaro ML, Valls JF, Kochert G. 2002. RFLP analysis of genetic variation in species of section Arachis, genus Arachis (Leguminosae). Euphytica 123:421 - 429

Gowda M, Bhat R, Sujay V, Kusuma P, Varshakumari V, Bhat S, Varshney R. 2011. Characterization of AhMITE1 transposition and its association with the mutational and evolutionary origin of botanical types in peanut (Arachis spp.). Plant Syst Evol 291 (3):153-158

Gowda MVC, Bhat RS, Motagi BN, Sujay V, Kumari V, Sujatha B. 2010. Association of high-frequency origin of late leaf spot resistant mutants with AhMITE1 transposition in peanut. Plant Breed 129 (5):567-569

Grieshammer U, Wynne JC. 1990. Isozyme variability in mature seeds of U.S. peanut cultivars and collections. Peanut Sci 17 (2):72-75

Guimarães P, Garsmeur O, Proite K, Leal-Bertioli S, Seijo G, Chaine C, Bertioli D, D'Hont, A.. 2008. BAC libraries construction from the ancestral diploid genomes of the allotetraploid cultivated peanut. BMC Plant Biol 8 (1): 14

Guo BZ, Chen XP, Dang P, Scully BT, Liang XQ, Holbrook CC, Yu JJ, Culbreath AK. 2008. Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection. BMC Dev Biol 8. doi:10.1186/1471-213x-8-12

Halward T, Stalker T, LaRue E, Kochert G. 1992. Use of single-primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.). Plant Mol Biol 18(2):315-325

Halward TM, Stalker HT, Larue EA, Kochert G. 1991. Genetic variation detectable with molecular markers among unadapted germ-plasm resources of cultivated peanut and related wild species. Genome 34:1013-1020

He G, Meng R, Gao H, Guo B, Newman M, Pittman RN, Prakash CS. 2005. Simple sequence repeat markers for botanical varieties of cultivated peanut (Arachis hypogaea L.). Euphytica 142:131 - 136

He G, Meng R, Newman M, Gao G, Pittman RN, Prakash CS. 2003. Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol 3:3

He G, Prakash C. 2001. Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers. Genet Resour Crop Evol 48:347 - 353

He G, Prakash CS. 1997. Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica 97:143 - 149

Herselman L. 2003. Genetic variation among Southern African cultivated peanut (Arachis hypogaea L.) genotypes as revealed by AFLP analysis. Euphytica 133 (3):319-327

Hilu KW. 1993. Polyploidy and the evolution of domesticated plants. Am J Bot 80:2521–2528

Hilu KW, Stalker HT. 1995. Genetic relationships between peanut and wild species of Arachis sect. Arachis (Fabaceae): Evidence from RAPDs. Plant Syst Evol 198 (3):167-178

Hong Y.B., Liang X.Q., Chen X.P., Liu H.Y., Zhou G.Y., Li S.X., Wen S.J.. 2008. Construction of genetic linkage map based on SSR markers in peanut (Arachis hypogaea L.). Agri Sci China 7 (8):915-921

Hong YB, Chen XP, Liang XQ, Liu HY, Zhou GY, Li SX, Wen SJ, Holbrook CC, Guo BZ. 2010. A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biol 10:1-13. doi:10.1186/1471-2229-10-17

Hopkins M, Casa A, Wang T, Mitchell S, Dean R, Kochert G, Kresovich S. 1999. Discovery and characterization of polymorphic simple sequence repeats (SSRS) in peanut. Crop Sci 39:1243-1247

Husted L. 1936. Cytological Studies on The Peanut. Arachis. II — Chromosome number, morphology and behavior, and their aplication to the problem of the origin of the cultivated forms. Cytologia 7:396-423

Kochert G, Halward T, Branch WD, Simpson CE. 1991. RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor ApplGenet 81 (5):565 - 570

Kochert G, Stalker HT, Gimenes M, Galgaro L, Lopes CR, Moore K. 1996. RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83:1282-1291

Koilkonda P, Sato S, Tabata S, Shirasawa K, Hirakawa H, Sakai H, Sasamoto S, Watanabe A, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Kohara M, Suzuki S, Hasegawa M, Kiyoshima H, Isobe S. 2011. Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp. Mol Breed1-14

Krapovickas A, Gregory WC. 1994. Taxonomia del genero Arachis (Leguminosae). Bonplandia 8:1 -186

Krishna TG, Mitra R. 1988. The probable genome donors to Arachis hypogaea L. based on arachin seed storage protein. Euphytica 37 (1):47-52

Lavin M, Herendeen PS, Wojciechowski MF. 2005. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst Biol 54 (4):575-594. doi:10.1080/10635150590947131

Leal-Bertioli SCM, Jose ACVF, Alves-Freitas DMT, Moretzsohn MC, Guimaraes PM, Nielen S, Vidigal BS, Pereira RW, Pike J, Favero AP, Parniske M, Varshney RK, Bertioli DJ. 2009. Identification of candidate genome regions controlling disease resistance in Arachis. BMC Plant Biol 9 (1):112

Lewis GP, Schrire B, Mackinder B, Lock M. 1995. Legumes of the world. Royal Botanic Gardens, Kew, Surrey, UK.

Liang X, Chen X, Hong Y, Liu H, Zhou G, Li S, Guo B. 2009. Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. BMC Plant Biol 9 (1):35

Lu J, Pickersgill B. 1993. Isozyme variation and species relationships in peanut and its wild relatives (Arachis L. - Leguminosae). Theor Appl Genet 85:550 - 560

Ma J, Devos KM, Bennetzen JL. 2004. Analyses of LTR-Retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860 - 869

Mace E, Phong D, Upadhyaya H, Chandra S, Crouch J. 2006. SSR analysis of cultivated groundnut (Arachis hypogaea L.) germplasm resistant to rust and late leaf spot diseases. Euphytica 152 (3):317-330

Milla SR, Isleib TG, Stalker HT. 2005. Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome 48 (1):1-11

Moretzsohn M, Leoi L, Proite K, Guimarães P, Leal-Bertioli S, Gimenes M, Martins W, Valls J, Grattapaglia D, Bertioli D. 2005. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet 111 (6):1060-1071

Moretzsohn MC, Barbosa AVG, Alves-Freitas DMT, Teixeira C, Leal-Bertioli SCM, Guimaraes PM, Pereira RW, Lopes CR, Cavallari MM, Valls JFM, Bertioli DJ, Gimenes MA. 2009. A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biol 9:40

Moretzsohn MC, Hopkins MS, Mitchell SE, Kresovich S, Valls JFM, Ferreira ME. 2004. Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol 4:11

Nagy ED, Chu Y, Guo Y, Khanal S, Tang S, Li Y, Dong WB, Timper P, Taylor C, Ozias-Akins P, Holbrook Jr CC, Beilinson V, Nielsen NC, Stalker H, Knapp SJ. 2010. Recombination is suppressed in an alien introgression on chromosome 5A of peanut harboring Rma, a dominant root-knot nematode resistance gene. Mol Breed26:357-370

Naito Y, Suzuki S, Iwata Y, Kuboyama T. 2008. Genetic diversity and relationship analysis of peanut germplasm using SSR markers. Breed Sci 3:293-300

Nielen S, Campos-Fonseca F, Leal-Bertioli S, Guimarães P, Seijo G, Town C, Arrial R, Bertioli D. 2010. FIDEL—a retrovirus-like retrotransposon and its distinct evolutionary histories in the A- and B-genome components of cultivated peanut. Chrom Res 18 (2):227-246

Nielen S, Vidigal BS, Leal-Bertioli SC, Ratnaparkhe M, Paterson AH, Garsmeur O, D'Hont A, Guimarães PM, Bertioli DJ. 2011. Matita, a new retroelement from peanut: characterization and evolutionary context in the light of the Arachis A-B genome divergence. Mol Genet Genom on line DOI?

Paik-Ro OG, Smith RL, Knauft DA. 1992. Restriction fragment length polymorphism evaluation of six peanut species within the Arachis section. Theor Appl Genet 84:201 - 208

Palmieri DA, Bechara MD, Curi RA, Gimenes MA, Lopes CR. 2005. Novel polymorphic microsatellite markers in section Caulorrhizae (Arachis, Fabaceae). Mol Ecol Notes 5 (1):77-79

Palmieri DA, Hoshino AA, Bravo JP, Lopes CR, Gimenes MA. 2002. Isolation and characterization of microsatellite loci from the forage species Arachis pintoi (Genus Arachis). Mol Ecol Notes 2:551 - 553

Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A. 2004. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet 108 (8):1492-1502

Pereira V. 2004. Insertion bias and purifying selection of retrotransposons in the Arabidopsis thaliana genome. Genome Biol 5 (10):R79

Preuss S, Pikaard CS. 2007. rRNA gene silencing and nucleolar dominance: insights into a chromosome-scale epigenetic on/off switch. Biochim Biophys Acta 1769 (5-6):383–392

Proite K, Leal-Bertioli S, Bertioli D, Moretzsohn M, da Silva F, Martins N, Guimaraes P. 2007. ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol 7 (1):7

Raina SN, Rani V, Kojima T, Ogihara Y, Singh KP, Devarumath RM. 2001. RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44 (5):763-772

Robledo G, Seijo G. 2010. Species relationships among the wild B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection: a new proposal for genome arrangement. Theor Appl Genet 121 (6):1033-1046

Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S. 2008. Genome Structure of the Legume, Lotus japonicus. DNA Res 15 (4):227-239. doi:10.1093/dnares/dsn008

Seijo G, Lavia GI, Fernandez A, Krapovickas A, Ducasse DA, Bertioli DJ, Moscone EA. 2007. Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. Am J Bot 94 (12):1963-1971. doi:10.3732/ajb.94.12.1963

Seijo JG, Lavia GI, Fernandez A, Krapovickas A, Ducasse D, Moscone EA. 2004. Physical mapping of the 5S and 18S-25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaënsis are the wild diploid progenitors of A. hypogaea (leguminosae). Am J Bot 91:1294 - 1303

Shirasawa K, Hirakawa H, Tabata S, Hasegawa M, Kiyoshima H, Suzuki S, Sasamoto S, Watanabe A, Fujishiro T, Isobe S. 2012. Characterization of active miniature inverted-repeat transposable elements in the peanut genome. . Theor Appl Biol in press

Singh K, Raina S, Singh A. 1996. Variation in chromosomal DNA associated with the evolution of Arachis species. Genome 39:890–897

Smartt J. 1990. The groundnut, Arachis hypogaea L. In: Smartt J (ed) Grain Legumes: Evolution and Genetic Resources. Cambridge Univ Press, Cambridge, UK, pp 30-84

Smartt J, Gregory WC, Gregory MP. 1978. The genomes of Arachis hypogaea. 1. Cytogenetic studies of putative genome donors. Euphytica 27:665 - 675

Smith B. 1950. Arachis hypogaea, aerial flower and subterranean fruit. Am J Bot 37 (10):802-850

Soltis DE, Soltis PS. 1995. The dynamic nature of polyploid genomes. Incomplete!!

Subramanian V, Gurtu S, Nageswara Rao RC, Nigam SN. 2000. Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43 (4):656-660

Tallury SP, Hilu KW, Milla SR, Friend SA, Alsaghir M, Stalker HT, Quandt D. 2005. Genomic affinities in Arachis section Arachis (Fabaceae): molecular and cytogenetic evidence. Theor Appl Genet 111 (7):1229-1237

Temsch EM, Greilhuber J. 2000. Genome size variation in Arachis hypogaea and A. monticola re-evaluated. Genome 43 (3):449-451

Temsch EM, Greilhuber J. 2001. Genome size in Arachis duranensis: a critical study. Genome 44 (5):826-830

Valls JFM, Simpson CE. 2005. New species of Arachis L. (Leguminosae) from Brazil, Paraguay and Bolivia. Bonplandia 14 (1-4):35-63

Varshney RK, Bertioli DJ, Moretzsohn MC, Vadez V, Krishnamurty L, Aruna R, Nigam SN, Ravi K, He G, Knapp SJ, Hoisington DA. 2009. The first SSR based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet 118:729 - 739

Vicient CM, Suoniemi A, Anamthawat-Jansson K, Tanskanen J, Beharav A, Nevo E, Schulman AH. 1999. Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell Online 11 (9):1769-1784. doi:10.1105/tpc.11.9.1769

Wang CT, Yang XD, Chen D, Lin Yu SX, Liu GZ, Tang YY, Xu JZ. 2007. Isolation of simple sequence repeats from groundnut. Elec J Biotechnol 10:473-480

Wessler SR, Carrington JC. 2005. Genome studies and molecular genetics: The consequences of gene and genome duplication in plants. Curr Opin Plant Biol 8(2):119-121

Yuan M, Gong L, Meng R, Li S, Dang P, Guo B, He G. 2010. Development of trinucleotide (GGC)n SSR markers in peanut (Arachis hypogaea L.). Elec J Biotechnol 13:5-6





Yüklə 126,69 Kb.

Dostları ilə paylaş:
1   2   3




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə