Easac'10 sb indd

Yüklə 409,96 Kb.
Pdf görüntüsü
ölçüsü409,96 Kb.
1   ...   12   13   14   15   16   17   18   19   20

30    | December 2010 | Realising European potential in synthetic biology 


Apart from the work of the European academies in analysing the status of synthetic biology, various other national 

and international bodies have been active in addressing capacity building and governance issues. Some examples 

are listed in Table 3, to illustrate the range. These other sources of information helped to provide the background 

Appendix 2   International activities in synthetic biology: 

analysing ethical and societal implications

Table 3  Issues analysis and other initiatives in synthetic biology

Organisation and initiative

Primary focus

European Commission (DG Research), NEST Pathfi nder 



 and Framework Programme 6-funded projects:

   Toward a European Strategy of 

Synthetic Biology (TESSY)








Inventory of resources, roadmap, analysis of strategic 


Analysis of current research (EU, USA)

Ethics, safety and security

Education, infrastructure and standards

EMBL/EMBO, Conference on Systems and Synthetic Biology, 



Scientifi c and social implications

European Science Foundation meeting and Eurocores project, 

EuroSynBio, opened for applications for research funding, 




Supporting engineering and molecular research in complex 

biological systems and societal context

Kavli Futures Symposium, Ilulissat Statement, 2007


Identifi cation of fundamental, applied and social research needs

US Woodrow Wilson Center report on synthetic 



Anticipating and addressing concerns for laboratory and 


International Risk Governance Council report on synthetic 

biology, 2008


Analysing applications, risks and governance

UK Biotechnology and Biological Sciences Research Council 

report, 2008


Analysing societal impact, risks and regulation

UK Lloyd’s Emerging Risks Team Report 2009


Analysing risks and governance issues with implications for 

insurance sector

European Group on Ethics of science and new technologies 

(EGE) 2009


Analysing issues for biosafety, biosecurity, industrial applications, 

IPR, societal engagement and research support


‘Synthetic biology, a NEST pathfi nder initiative’ at ftp://ftp.cordis.europa.eu/pub/nest/docs/5-nest-synthetic-080507.pdf.


TESSY fi nal report ‘TESSY achievements and future perspectives in synthetic biology’, December 2008, at www.tessy-europe.



‘An analysis of synthetic biology research in Europe, the United States and Canada’ at www.atg-biosuynthetics.com/



Output as commentary paper ‘Synbiosafe e-conference: online community discussion on the societal aspects of synthetic 

biology’ (M. Schmidt, H. Torgersen, A. Ganguli-Mitra, A. Kelle, A. Deplazes, N. Biller-Andorno) Syst Synth Biol, doi:10.1007/



‘Emergence: a foundation for synthetic biology in Europe’, at www.synbio.org.uk/synthetic-biology-index/1105-emergence-



‘Systems and synthetic biology: scientifi c and social implications’, Heidelberg, Germany, November 2008 at www.embl.org/



European conference on ‘Synthetic biology: design, programming and optimisation of biological systems’, St Feliu de Guixois, 

Spain, November 2007 at www.functionalgenomics.org.uk; EuroSynBio call for proposals on www.esf.org/activities/eurocores/



International discussion meeting in Ilulissat, Greenland. Statement ‘Synthesizing the future – a vision for the convergence of 

synthetic biology and nanotechnology’ accessed at www.royalsociety.org/page.asp?id=7493.


Report ‘Synthetic biology’ by D. Caruso, Hybrid Vigor Institute, at www.science.progress.org/wp-content/uploads/2008/11/

syntheticbiology.pdf for Woodrow Wilson Center (www.wilsoncenter.org).


Report ‘Synthetic biology risks and opportunities for an emerging fi eld’ by J. Calvert and J. Tait at www.igrc.org/IMG/pdf/RGC_



Report ‘Synthetic biology social and ethical challenges’ by A. Balmer and P. Martin on www.bbsrc.ac.uk.


Report ‘Synthetic biology: infl uencing development’ by Lloyd’s Emerging Risks Team, July 2009, on www.lloyds.com.


‘Opinion on the ethics of synthetic biology’, EGE, November 2009, at www.ec.europa.eu/european_group_ethics/docs/



Realising European potential in synthetic biology | December 2010 |    31

for EASAC inquiry in elucidating what public policy-makers need to know to provide a supportive framework for 

synthetic biology R&D.

Apart from the ethical issues raised about creating life, research funders, NGOs and advisory groups have discussed other 

ethical issues associated with synthetic biology. Concerns relating to trade and global justice have been expressed. For 

example, the synthesis of artemesinin might move production from developing countries to developed countries—but 

this type of concern is by no means confi ned to the products of synthetic biology.

It is also worth noting that in the recent work of the European Commission-funded Synbiosafe project (Ganguli-Mitra 

et al. 2009), a survey of researchers involved in synthetic biology revealed a prevailing view that synthetic biology raises 

no particular ethical issues in itself and that any social implications are exclusively related to specifi c practical applications, 

for example, manipulation of the human genome. It is not clear if these researchers’ perspective is shared more widely 

across the EU, although some initial public expectations are being elucidated (chapter 4). Other commentators have 

raised concerns that synthetic biology raises new ethical issues in creating artifi cial life and in blurring the boundaries 

between animate and inanimate. However, bioethicists themselves differ in their views on this: some perceive a need 

for ‘synthetic bioethics’, others see little novelty in synthetic biology ethical issues. This debate might be helped by 

greater clarity in defi nition. Semantic problems arise in part because researchers use terms and metaphors (such as ‘living 

machines’) that appear to blur the boundary between living and non-living matter.

As there is extensive discussion on ethical issues in synthetic biology in the publications already cited (in particular the 

German Statement and the Royal Society publication described in footnote 21) as well as in the sources listed in Table 

3, the EASAC Working Group did not address these ethical matters in further detail. However, as noted elsewhere in 

this report, EASAC suggests that the academies should support further analysis and debate on ethical issues, perhaps 

through the mechanism of the Standing Committee on Science and Ethics of the All European Academies (ALLEA).

32    | December 2010 | Realising European potential in synthetic biology 



American Association for the Advancement of Science


All European Academies


Central Intelligence Agency

DNA Deoxyribonucleic 


DG Enterprise and Industry 

European Commission Directorate General for Enterprise and Industry

DG Research 

European Commission Directorate General for Research

DG Sanco 

European Commission Directorate General for Health and Consumer Protection


European Academies Science Advisory Council


European Group on Ethics in Science and New Technologies


European Molecular Biology Organisation


European Medicines Agency

EU European 



Food and Drug Administration

GM Genetically 

modifi ed

GMOs Genetically 

modifi ed organisms

IAP InterAcademy 



International Genetically Engineered Machine


Intellectual property rights

IT Information 



Massachusetts Institute of Technology

NGO Non-governmental 



National Institutes of Health


Research and development

RNA Ribonucleic 



Small and medium-sized enterprises

XNA Xeno-nucleic 


List of abbreviations


Realising European potential in synthetic biology | December 2010 |    33

Academy of Medical Sciences and Royal Academy 

of Engineering (2007). Systems biology: a vision for 

engineering and medicine. Available at www.acmedsci.


Alper, J (2009). Biotech in the basement. Nature 

Biotechnology 27, 1077–1078

Anon (2010). Ten years of synergy. Nature 463, 269–270

Ball, P (2004). Starting from scratch. Nature 431


Bennett, S, Gilman, N, Stavrianakis, A & Rabinow, P 

(2009). From synthetic biology to biohacking: are we 

prepared? Nature Biotechnology 27, 1109–1111

Calvert, J (2008). The commodifi cation of emergence: 

systems biology, synthetic biology and intellectual 

property. Biosocieties 3, 383–398

Cantone, I, Marucci, L, Iorio, F, et al. (2009). A yeast 

synthetic network for in vivo assessment of reverse-

engineering and modelling approaches. Cell 137


Carette, N, Engelkamp, H, Akpa, E, et al. (2007). A virus-

based biocatalyst. Nature Nanotechnology 2, 226–229

Cello, J, Paul, AV & Wimmer, E (2002). Chemical synthesis 

of poliovirus cDNA: generation of infectious virus in the 

absence of natural template. Science 297, 1016–1018

Chiarabelli, C, Stano, P & Luisi, PG (2009). Chemical 

approaches to synthetic biology. Current Opinion in 

Biotechnology 20, 492–497

Chin, JW (2006). Modular approaches to expanding 

the functions of living matter. Nature Chemical Biology 

2, 304–311

CIA (2001). The darker bioweapons future. Offi ce of 

Transnational Issues. Available at www.fas.org/irp/cia/


DFG, German Academy of Sciences Leopoldina and 

Acatech (2009). Synthetic biology. Wiley, Weinheim, 


Eelkema, R, Pollard, MM, Vicario, J, et al. (2006). 

Nanomotor rotates microscale objects. Nature 440, 163

European Commission (2008). Recommendation on 

a code of conduct for responsible nanosciences and 

nanotechnologies research. C (2008) 424 fi nal. Available 

at http://ec.europa.eu/nanotechnology/index_en.html

Feher, T, Papp, B, Pal, C & Posfai, G (2007). Systematic 

genome reductions: theoretical and experimental 

approaches. Chemistry Review 8, 3498–3513


Ganguli-Mitra, A, Schmidt, M, Torgersen, H, Deplazes, 

A & Biller-Andorno, N (2009). Of Newtons and heretics. 

Nature Biotechnology 27, 321–322

Gibson, DG, Benders, GA, Andrews-Pfannkoch, C, 

et al. (2008). Complete chemical synthesis, assembly

and cloning of a Mycoplasma genitalium genome. 

Science 319, 1215–1220

Gulati, S, Rouilly, V, Niu, X, et al. (2009). Opportunities 

for microfl uidic technologies in synthetic biology. Journal 

of the Royal Society Interface, available at http://rsif.



Henkel, J & Maurer, S M (2009). Parts, property and 

sharing. Nature Biotechnology 27, 1095–1098

Herdewijn, P & Marliere, P (2009). Towards safe 

genetically modifi ed organisms through the chemical 

diversifi cation of nucleic acids. Chemistry and Biodiversity 

6, 791–808

Kemmer, C, Gitzinger, M, Daoud-El Baba, M, Djonov, V, 

Stelling, J & Fusseneger, M (2010). Self-suffi cient control 

of urate homeostasis in mice by a synthetic circuit. Nature 

Biotechnology 28, 355–360

Khalil, AS & Collins JJ (2010) Synthetic biology: 

applications come of age. Nature Review Genetics 11


Kiel, C, Yus, E & Serrano, L (2010). Engineering signal 

transduction pathways. Cell 140, 33–47

Kocer, A, Walko, M & Ferringa, BL (2007). Synthesis and 

utilization of reversible and irreversible light-activated 

nanovalves derived from the channel protein MscL. 

Nature Protocols 2, 1426–1437

Kuhner, S, van Noort, V, Betts, MJ, et al. (2009). 

Proteome organization in genome-reduced bacterium. 

Science 326, 1235–1240

Kwok, R (2010). Five hard truths for synthetic biology. 

Nature 463, 288–290

Lee, C-F, Leigh, DA, Pritchard, RG, et al. (2009). Hybrid 

organic–inorganic rotaxones and molecular shuttles. 

Nature 458, 314–318

Lum, AM, Huang, J, Hutchinson, RC & Kao, CM (2004). 

Reverse engineering of industrial pharmaceutical-

producing actinomycete strains using DNA microarrays. 

Metabolic Engineering 6, 186–196

Marliere, P (2009). The farther, the safer: a manifesto 

for securely navigating synthetic species away from 

the old living world. Systems and Synthetic Biology 3


34    | December 2010 | Realising European potential in synthetic biology 


Royal Society (2008b). Emerging technologies and 

social innovation. Report on the third joint Royal 

Society–Science Council of Japan workshop on new and 

emerging technologies. Available at www.royalsoc.org

Royal Society (2008c). Royal Society activities on reducing 

the risk of the misuse of scientifi c research. Policy 

document 17/08. Available at www.royalsoc.org

Schmidt, M (2009). Societal aspects of synthetic 

biology. Systems and Synthetic Biology 3, 1–2. Available 

at www.synbiosafe.eu/uploads/pdf/Schmidt-2009-SSBJ.


Sheridan, C (2009). Making green. Nature Biotechnology 

27, 1074–1076

Steen, EJ, Kang, Y, Bokinsky, G, et al. (2010) Microbial 

production of fatty-acid-derived fuels and chemicals from 

plant biomass. Nature 463, 559–562

Swiss Academy of Sciences (2006). Synthetic biology. 

Forum on Genetic research. Available at www.


Tigges, M, Marquez-Lago, TT, Stelling, J & Fussenegger, 

M (2009). A tunable synthetic mammalian oscillator. 

Nature 457, 309–312

Van den Heuvel, MGL & Dekker, C (2007). Motor proteins 

at work for nanotechnology. Science 317, 333–336

Wang, K, Neumann, H, Peak-Chow, SY & Chin, JW 

(2007). Evolved orthogonal ribosomes enhance the 

effi ciency of synthetic genetic code expansion. Nature 

Biotechnology 25, 770–777

Weber, W, Rimann, M, Spielmann, M, et al. (2004). 

Gas-inducible transgene expression in mammalian cells 

and mice. Nature Biotechnology 22, 1440–1444

Weber, W, Daoud-El Baba, M & Fussenegger, M (2007a). 

Synthetic ecosystems based on airborne inter- and 

intrakingdom communication. Proceedings of the 

National Academy of Sciences of the United States of 

America 104, 10435–10440

Weber, W, Stelling, J, Rimann, M, et al. (2007b). 

A synthetic time-delay circuit in mammalian cells and 

mice. Proceedings of the National Academy of Sciences 

of the United States of America 104, 2643–2648

Zhang, M-O, Gaisser, S, Nur-E-Alam, et al. (2008). 

Optimizing natural products by biosynthetic engineering: 

discovery of nonquinone Hsp 90 inhibitors. Journal of 

Medicinal Chemistry 51, 5494–5497

May, M (2009). Engineering a new business. Nature 

Biotechnology 27, 1112–1120

Morris, K (2009). Nanotechnology crucial in fi ghting 

infectious disease. Lancet Infectious Diseases 9, 215

Nelson, B (2009). Building blocks. Nature 462, 684–688

Pal, C, Papp, B, Lercher, MJ, Csermely, P, Oliver SG & 

Hurst, LD (2006). Chance and necessity in the evolution 

of theoretical and experimental networks. Nature 440


Pantarotto, D, Browne, WR & Ferringa, BL (2008). 

Autonomous propulsion of carbon nanotubes powered 

by a multienzyme ensemble. Chemical Communications 


Piel, J (2009). Metabolites from symbiotic bacteria. 

Natural Products Reports 26, 338–362

Posfai, G, Plunkett III, G, Feher, T, et al. (2006). Emergent 

properties of reduced-genome Escherichia coli. Science 

312, 1044–1046

POST (2008). Synthetic biology. Parliamentary Offi ce 

of Science and Technology POSTNote Number 298. 

Available at www.parliament.uk/document/upload/


Rasmussen, S, Chan, L, Deamer, D, et al. (2004). 

Transitions from nonliving to living matter. Science 202


Royal Netherlands Academy of Arts and Sciences, Health 

Council of the Netherlands and the Advisory Council 

on Health Research (2008). Synthetic biology: creating 

opportunities. Report number 2008/19E. Available at 


Royal Netherlands Academy of Arts and Sciences 

(2009). A code of conduct for biosecurity. Available at 



Royal Society (2003). Keeping science open: the effects 

of intellectual property policy on the conduct of science. 

Available at www.royalsoc.org

Royal Society and Royal Academy of Engineering (2004). 

Nanoscience and nanotechnologies: opportunities and 

uncertainties. Available at www.royalsoc.org

Royal Society (2008a). Synthetic biology – scientifi c 

discussion meeting summary. Available at www.royalsoc.

org; additional information is available at the Royal 

Society’s Synthetic Biology resource at www.royalsociety.


For further information:

EASAC Secretariat

Deutsche Akademie der Naturforscher Leopoldina

German National Academy of Sciences

Postfach 110543

06019 Halle (Saale)


tel +49 (0)345 4723 9831

fax +49 (0)345 4723 9839

email secretariat@easac.eu

Printed by Latimer Trend & Co Ltd, Plymouth, UK

EASAC policy report 13

December 2010

ISBN: 978-3-8047-2866-0

This report can be found at 


Realising European potential in synthetic biology: 

scientific opportunities and good governance



building science into EU policy

Yüklə 409,96 Kb.

Dostları ilə paylaş:
1   ...   12   13   14   15   16   17   18   19   20

Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə