Easac'10 sb indd



Yüklə 409,96 Kb.
Pdf görüntüsü
səhifə20/20
tarix03.05.2018
ölçüsü409,96 Kb.
#41154
1   ...   12   13   14   15   16   17   18   19   20

30    | December 2010 | Realising European potential in synthetic biology 

EASAC


Apart from the work of the European academies in analysing the status of synthetic biology, various other national 

and international bodies have been active in addressing capacity building and governance issues. Some examples 

are listed in Table 3, to illustrate the range. These other sources of information helped to provide the background 

Appendix 2   International activities in synthetic biology: 

analysing ethical and societal implications

Table 3  Issues analysis and other initiatives in synthetic biology

Organisation and initiative

Primary focus

European Commission (DG Research), NEST Pathfi nder 

initiative

36

 and Framework Programme 6-funded projects:



   Toward a European Strategy of 

Synthetic Biology (TESSY)

37

 Synbiology



38

 Synbiosafe

39

 Emergence



40

Inventory of resources, roadmap, analysis of strategic 

sustainability

Analysis of current research (EU, USA)

Ethics, safety and security

Education, infrastructure and standards

EMBL/EMBO, Conference on Systems and Synthetic Biology, 

2008


41

Scientifi c and social implications

European Science Foundation meeting and Eurocores project, 

EuroSynBio, opened for applications for research funding, 

2009

42

 



Supporting engineering and molecular research in complex 

biological systems and societal context

Kavli Futures Symposium, Ilulissat Statement, 2007

43

Identifi cation of fundamental, applied and social research needs



US Woodrow Wilson Center report on synthetic 

biology


44

Anticipating and addressing concerns for laboratory and 

environment

International Risk Governance Council report on synthetic 

biology, 2008

45

Analysing applications, risks and governance



UK Biotechnology and Biological Sciences Research Council 

report, 2008

46

Analysing societal impact, risks and regulation



UK Lloyd’s Emerging Risks Team Report 2009

47

Analysing risks and governance issues with implications for 



insurance sector

European Group on Ethics of science and new technologies 

(EGE) 2009

48

Analysing issues for biosafety, biosecurity, industrial applications, 



IPR, societal engagement and research support

36  


‘Synthetic biology, a NEST pathfi nder initiative’ at ftp://ftp.cordis.europa.eu/pub/nest/docs/5-nest-synthetic-080507.pdf.

37  


TESSY fi nal report ‘TESSY achievements and future perspectives in synthetic biology’, December 2008, at www.tessy-europe.

eu/public_docs/TESSY-Final-Report_D5-3.pdf.

38  

‘An analysis of synthetic biology research in Europe, the United States and Canada’ at www.atg-biosuynthetics.com/



nest-project.html.

39  


Output as commentary paper ‘Synbiosafe e-conference: online community discussion on the societal aspects of synthetic 

biology’ (M. Schmidt, H. Torgersen, A. Ganguli-Mitra, A. Kelle, A. Deplazes, N. Biller-Andorno) Syst Synth Biol, doi:10.1007/

s11693-008-9019-y.

40  

‘Emergence: a foundation for synthetic biology in Europe’, at www.synbio.org.uk/synthetic-biology-index/1105-emergence-



foundation-in-europe.

41  


‘Systems and synthetic biology: scientifi c and social implications’, Heidelberg, Germany, November 2008 at www.embl.org/

aboutus/sciencesociety/conferences/2008/programme.html.

42  

European conference on ‘Synthetic biology: design, programming and optimisation of biological systems’, St Feliu de Guixois, 



Spain, November 2007 at www.functionalgenomics.org.uk; EuroSynBio call for proposals on www.esf.org/activities/eurocores/

programmes/eurosynbio.html.

43  

International discussion meeting in Ilulissat, Greenland. Statement ‘Synthesizing the future – a vision for the convergence of 



synthetic biology and nanotechnology’ accessed at www.royalsociety.org/page.asp?id=7493.

44  


Report ‘Synthetic biology’ by D. Caruso, Hybrid Vigor Institute, at www.science.progress.org/wp-content/uploads/2008/11/

syntheticbiology.pdf for Woodrow Wilson Center (www.wilsoncenter.org).

45  

Report ‘Synthetic biology risks and opportunities for an emerging fi eld’ by J. Calvert and J. Tait at www.igrc.org/IMG/pdf/RGC_



ConceptNote_SyntheticBiology_Final_30April.pdf.

46  


Report ‘Synthetic biology social and ethical challenges’ by A. Balmer and P. Martin on www.bbsrc.ac.uk.

47  


Report ‘Synthetic biology: infl uencing development’ by Lloyd’s Emerging Risks Team, July 2009, on www.lloyds.com.

48  


‘Opinion on the ethics of synthetic biology’, EGE, November 2009, at www.ec.europa.eu/european_group_ethics/docs/

opinion25_en.pdf.




EASAC 

Realising European potential in synthetic biology | December 2010 |    31

for EASAC inquiry in elucidating what public policy-makers need to know to provide a supportive framework for 

synthetic biology R&D.

Apart from the ethical issues raised about creating life, research funders, NGOs and advisory groups have discussed other 

ethical issues associated with synthetic biology. Concerns relating to trade and global justice have been expressed. For 

example, the synthesis of artemesinin might move production from developing countries to developed countries—but 

this type of concern is by no means confi ned to the products of synthetic biology.

It is also worth noting that in the recent work of the European Commission-funded Synbiosafe project (Ganguli-Mitra 

et al. 2009), a survey of researchers involved in synthetic biology revealed a prevailing view that synthetic biology raises 

no particular ethical issues in itself and that any social implications are exclusively related to specifi c practical applications, 

for example, manipulation of the human genome. It is not clear if these researchers’ perspective is shared more widely 

across the EU, although some initial public expectations are being elucidated (chapter 4). Other commentators have 

raised concerns that synthetic biology raises new ethical issues in creating artifi cial life and in blurring the boundaries 

between animate and inanimate. However, bioethicists themselves differ in their views on this: some perceive a need 

for ‘synthetic bioethics’, others see little novelty in synthetic biology ethical issues. This debate might be helped by 

greater clarity in defi nition. Semantic problems arise in part because researchers use terms and metaphors (such as ‘living 

machines’) that appear to blur the boundary between living and non-living matter.

As there is extensive discussion on ethical issues in synthetic biology in the publications already cited (in particular the 

German Statement and the Royal Society publication described in footnote 21) as well as in the sources listed in Table 

3, the EASAC Working Group did not address these ethical matters in further detail. However, as noted elsewhere in 

this report, EASAC suggests that the academies should support further analysis and debate on ethical issues, perhaps 

through the mechanism of the Standing Committee on Science and Ethics of the All European Academies (ALLEA).



32    | December 2010 | Realising European potential in synthetic biology 

EASAC


AAAS 

American Association for the Advancement of Science

ALLEA 

All European Academies



CIA 

Central Intelligence Agency

DNA Deoxyribonucleic 

acid


DG Enterprise and Industry 

European Commission Directorate General for Enterprise and Industry

DG Research 

European Commission Directorate General for Research

DG Sanco 

European Commission Directorate General for Health and Consumer Protection

EASAC 

European Academies Science Advisory Council



EGE 

European Group on Ethics in Science and New Technologies

EMBO 

European Molecular Biology Organisation



EMEA 

European Medicines Agency

EU European 

Union


FDA 

Food and Drug Administration

GM Genetically 

modifi ed


GMOs Genetically 

modifi ed organisms

IAP InterAcademy 

Panel


iGEM 

International Genetically Engineered Machine

IPR 

Intellectual property rights



IT Information 

technology

MIT 

Massachusetts Institute of Technology



NGO Non-governmental 

organisation

NIH 

National Institutes of Health



R&D 

Research and development

RNA Ribonucleic 

acid


SMEs 

Small and medium-sized enterprises

XNA Xeno-nucleic 

acid


List of abbreviations


EASAC 

Realising European potential in synthetic biology | December 2010 |    33

Academy of Medical Sciences and Royal Academy 

of Engineering (2007). Systems biology: a vision for 



engineering and medicine. Available at www.acmedsci.

ac.uk


Alper, J (2009). Biotech in the basement. Nature 

Biotechnology 27, 1077–1078

Anon (2010). Ten years of synergy. Nature 463, 269–270

Ball, P (2004). Starting from scratch. Nature 431

624–626

Bennett, S, Gilman, N, Stavrianakis, A & Rabinow, P 



(2009). From synthetic biology to biohacking: are we 

prepared? Nature Biotechnology 27, 1109–1111

Calvert, J (2008). The commodifi cation of emergence: 



systems biology, synthetic biology and intellectual 

property. Biosocieties 3, 383–398

Cantone, I, Marucci, L, Iorio, F, et al. (2009). A yeast 



synthetic network for in vivo assessment of reverse-

engineering and modelling approaches. Cell 137

172–181


Carette, N, Engelkamp, H, Akpa, E, et al. (2007). A virus-

based biocatalyst. Nature Nanotechnology 2, 226–229

Cello, J, Paul, AV & Wimmer, E (2002). Chemical synthesis 



of poliovirus cDNA: generation of infectious virus in the 

absence of natural template. Science 297, 1016–1018

Chiarabelli, C, Stano, P & Luisi, PG (2009). Chemical 



approaches to synthetic biology. Current Opinion in 

Biotechnology 20, 492–497

Chin, JW (2006). Modular approaches to expanding 

the functions of living matter. Nature Chemical Biology 

2, 304–311

CIA (2001). The darker bioweapons future. Offi ce of 

Transnational Issues. Available at www.fas.org/irp/cia/

product/bw1103.pdf

DFG, German Academy of Sciences Leopoldina and 

Acatech (2009). Synthetic biology. Wiley, Weinheim, 

Germany

Eelkema, R, Pollard, MM, Vicario, J, et al. (2006). 



Nanomotor rotates microscale objects. Nature 440, 163

European Commission (2008). Recommendation on 



a code of conduct for responsible nanosciences and 

nanotechnologies research. C (2008) 424 fi nal. Available 

at http://ec.europa.eu/nanotechnology/index_en.html

Feher, T, Papp, B, Pal, C & Posfai, G (2007). Systematic 

genome reductions: theoretical and experimental 

approaches. Chemistry Review 8, 3498–3513

References

Ganguli-Mitra, A, Schmidt, M, Torgersen, H, Deplazes, 

A & Biller-Andorno, N (2009). Of Newtons and heretics. 

Nature Biotechnology 27, 321–322

Gibson, DG, Benders, GA, Andrews-Pfannkoch, C, 

et al. (2008). Complete chemical synthesis, assembly



and cloning of a Mycoplasma genitalium genome. 

Science 319, 1215–1220

Gulati, S, Rouilly, V, Niu, X, et al. (2009). Opportunities 

for microfl uidic technologies in synthetic biology. Journal 

of the Royal Society Interface, available at http://rsif.

royalsocietypublishing.org/content/early/2009/05/19/

rsif.2009.0083.focus.full

Henkel, J & Maurer, S M (2009). Parts, property and 

sharing. Nature Biotechnology 27, 1095–1098

Herdewijn, P & Marliere, P (2009). Towards safe 



genetically modifi ed organisms through the chemical 

diversifi cation of nucleic acids. Chemistry and Biodiversity 

6, 791–808

Kemmer, C, Gitzinger, M, Daoud-El Baba, M, Djonov, V, 

Stelling, J & Fusseneger, M (2010). Self-suffi cient control 

of urate homeostasis in mice by a synthetic circuit. Nature 

Biotechnology 28, 355–360

Khalil, AS & Collins JJ (2010) Synthetic biology: 

applications come of age. Nature Review Genetics 11

367–379


Kiel, C, Yus, E & Serrano, L (2010). Engineering signal 

transduction pathways. Cell 140, 33–47

Kocer, A, Walko, M & Ferringa, BL (2007). Synthesis and 



utilization of reversible and irreversible light-activated 

nanovalves derived from the channel protein MscL. 

Nature Protocols 2, 1426–1437

Kuhner, S, van Noort, V, Betts, MJ, et al. (2009). 

Proteome organization in genome-reduced bacterium. 

Science 326, 1235–1240

Kwok, R (2010). Five hard truths for synthetic biology. 

Nature 463, 288–290

Lee, C-F, Leigh, DA, Pritchard, RG, et al. (2009). Hybrid 

organic–inorganic rotaxones and molecular shuttles. 

Nature 458, 314–318

Lum, AM, Huang, J, Hutchinson, RC & Kao, CM (2004). 

Reverse engineering of industrial pharmaceutical-

producing actinomycete strains using DNA microarrays. 

Metabolic Engineering 6, 186–196

Marliere, P (2009). The farther, the safer: a manifesto 

for securely navigating synthetic species away from 

the old living world. Systems and Synthetic Biology 3

77–84



34    | December 2010 | Realising European potential in synthetic biology 

EASAC


Royal Society (2008b). Emerging technologies and 

social innovation. Report on the third joint Royal 

Society–Science Council of Japan workshop on new and 

emerging technologies. Available at www.royalsoc.org

Royal Society (2008c). Royal Society activities on reducing 



the risk of the misuse of scientifi c research. Policy 

document 17/08. Available at www.royalsoc.org

Schmidt, M (2009). Societal aspects of synthetic 

biology. Systems and Synthetic Biology 3, 1–2. Available 

at www.synbiosafe.eu/uploads/pdf/Schmidt-2009-SSBJ.

pdf

Sheridan, C (2009). Making green. Nature Biotechnology 



27, 1074–1076

Steen, EJ, Kang, Y, Bokinsky, G, et al. (2010) Microbial 



production of fatty-acid-derived fuels and chemicals from 

plant biomass. Nature 463, 559–562

Swiss Academy of Sciences (2006). Synthetic biology. 

Forum on Genetic research. Available at www.

geneticresearch.ch/e/Themes/Synthetic_Biology

Tigges, M, Marquez-Lago, TT, Stelling, J & Fussenegger, 

M (2009). A tunable synthetic mammalian oscillator. 

Nature 457, 309–312

Van den Heuvel, MGL & Dekker, C (2007). Motor proteins 



at work for nanotechnology. Science 317, 333–336

Wang, K, Neumann, H, Peak-Chow, SY & Chin, JW 

(2007). Evolved orthogonal ribosomes enhance the 

effi ciency of synthetic genetic code expansion. Nature 

Biotechnology 25, 770–777

Weber, W, Rimann, M, Spielmann, M, et al. (2004). 

Gas-inducible transgene expression in mammalian cells 

and mice. Nature Biotechnology 22, 1440–1444

Weber, W, Daoud-El Baba, M & Fussenegger, M (2007a). 



Synthetic ecosystems based on airborne inter- and 

intrakingdom communication. Proceedings of the 

National Academy of Sciences of the United States of 

America 104, 10435–10440

Weber, W, Stelling, J, Rimann, M, et al. (2007b). 



A synthetic time-delay circuit in mammalian cells and 

mice. Proceedings of the National Academy of Sciences 

of the United States of America 104, 2643–2648

Zhang, M-O, Gaisser, S, Nur-E-Alam, et al. (2008). 

Optimizing natural products by biosynthetic engineering: 

discovery of nonquinone Hsp 90 inhibitors. Journal of 

Medicinal Chemistry 51, 5494–5497

May, M (2009). Engineering a new business. Nature 

Biotechnology 27, 1112–1120

Morris, K (2009). Nanotechnology crucial in fi ghting 

infectious disease. Lancet Infectious Diseases 9, 215

Nelson, B (2009). Building blocks. Nature 462, 684–688

Pal, C, Papp, B, Lercher, MJ, Csermely, P, Oliver SG & 

Hurst, LD (2006). Chance and necessity in the evolution 



of theoretical and experimental networks. Nature 440

667–670


Pantarotto, D, Browne, WR & Ferringa, BL (2008). 

Autonomous propulsion of carbon nanotubes powered 

by a multienzyme ensemble. Chemical Communications 

1533–1535

Piel, J (2009). Metabolites from symbiotic bacteria. 

Natural Products Reports 26, 338–362

Posfai, G, Plunkett III, G, Feher, T, et al. (2006). Emergent 

properties of reduced-genome Escherichia coli. Science 

312, 1044–1046

POST (2008). Synthetic biology. Parliamentary Offi ce 

of Science and Technology POSTNote Number 298. 

Available at www.parliament.uk/document/upload/

postpn298.pdf

Rasmussen, S, Chan, L, Deamer, D, et al. (2004). 



Transitions from nonliving to living matter. Science 202

963–965


Royal Netherlands Academy of Arts and Sciences, Health 

Council of the Netherlands and the Advisory Council 

on Health Research (2008). Synthetic biology: creating 

opportunities. Report number 2008/19E. Available at 

www.knaw.nl/cfdata/publications/results_zoeken.cfm

Royal Netherlands Academy of Arts and Sciences 

(2009). A code of conduct for biosecurity. Available at 

www.knaw.nl/cfdata/publicaties/detail.cfm?boeken_

ordernr=20071092

Royal Society (2003). Keeping science open: the effects 

of intellectual property policy on the conduct of science. 

Available at www.royalsoc.org

Royal Society and Royal Academy of Engineering (2004). 

Nanoscience and nanotechnologies: opportunities and 

uncertainties. Available at www.royalsoc.org

Royal Society (2008a). Synthetic biology – scientifi c 



discussion meeting summary. Available at www.royalsoc.

org; additional information is available at the Royal 

Society’s Synthetic Biology resource at www.royalsociety.

org/page.asp?id=7493




For further information:

EASAC Secretariat

Deutsche Akademie der Naturforscher Leopoldina

German National Academy of Sciences

Postfach 110543

06019 Halle (Saale)

Germany

tel +49 (0)345 4723 9831



fax +49 (0)345 4723 9839

email secretariat@easac.eu

Printed by Latimer Trend & Co Ltd, Plymouth, UK

EASAC policy report 13

December 2010

ISBN: 978-3-8047-2866-0

This report can be found at 

www.easac.eu

Realising European potential in synthetic biology: 

scientific opportunities and good governance

ea

sac



building science into EU policy

Yüklə 409,96 Kb.

Dostları ilə paylaş:
1   ...   12   13   14   15   16   17   18   19   20




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə