Occurrence and Mobility of Mercury in Groundwater



Yüklə 0,73 Mb.
Pdf görüntüsü
səhifə17/25
tarix07.10.2023
ölçüsü0,73 Mb.
#126078
1   ...   13   14   15   16   17   18   19   20   ...   25
InTech-Occurrence and mobility of mercury in groundwater

Figure 2. 
Mobilization of mercury from land surface to groundwater and biogeochemical transformations along flow
paths in an unconsolidated sandy, acidic aquifer.
Occurrence and Mobility of Mercury in Groundwater
http://dx.doi.org/10.5772/55487
135


Studies in New Jersey and Cape Cod, USA, have investigated processes leading to Hg mobility
in groundwater in settings that involve inputs from sewage to the subsurface. Given that
sewage effluent contains materials that can fundamentally alter biogeochemical environments,
mobilization of metals such as Hg, whatever their origin, may be an ever increasing process
as humans continue to develop their surroundings. It is hoped that the research, past and
ongoing, that is discussed herein will be of use to readers who seek to understand, to prevent,
or to mitigate Hg contamination of groundwater supplies.
(Any use of trade, product, or firm names is for descriptive purposes only and does not imply
endorsement by the U.S. Government.)
Author details
Julia L. Barringer, Zoltan Szabo and Pamela A. Reilly
U.S. Geological Survey, USA
References
[1] Achá, D., Hintelmann, H., & Yee, J. (2011). Importance of sulfate reducing bacteria in
mercury methylation and demethylation in periphyton from Bolivian Amazon re‐
gion. Chemosphere, 82, 911-916.
[2] Allard, B. & Arsenie, I. (1991). Abiotic reduction of mercury by humic substances in
aquatic systems—an important process for the mercury cycle. Water, Air, and Soil Pol‐
lution, 56, 457-464.
[3] Alpers, C.N. & Hunerlach, M.P. (2000). Mercury contamination from historic gold
mining in California. U.S. Geological Survey Fact Sheet FS-061-00.
[4] Amirbahman, A. & Fernandez, I.J. (2012). Chapter 7. The role of soils in storage and
cycling of mercury. In. Bank, M.S. (ed.) Mercury in the environment: Pattern and
Process. Berkely, University of California Press, 97-116.
[5] Amirbahman, A., Kent, D.B., & Curtis, G.P. (2012). Kinetics of abiotic mercury (II) re‐
duction by iron (II). (Abstract), Program: BIOGEOMON, the 7
th
International Sympo‐
sium on Ecosystem Behavior, July 15-20. 2012, Northport, Maine.
[6] Andersson, A. (1979). Mercury in soils. 79-112. In: Nriagu, J.O., (ed). The biogeo‐
chemistry of mercury in the environment. Amsterdam:, The Netherlands:Elsevier/
North Holland Biomedical Press.
Current Perspectives in Contaminant Hydrology and Water Resources Sustainability
136


[7] Andren, A.W. & Nriago, J.O. (1979). The global cycle of mercury. 1-21. In. Nriagu,
J.O., (ed.), The biogeochemistry of mercury in the environment. Amsterdam, The
Netherlands: Elsevier/North Holland Biomedical Press.
[8] Bakir, F., Damluji, S.F., Amin-Zaki, L., Murtada, M., Khalidi, A., al-Rawi, N.Y., Tikri‐
ti, S., Dahahir, H.I., Clarkson, T.W., Smith, J.C., & Doherty, R.A. (1973). Methylmer‐
cury poisoning in Iraq. Science, 181, 230-241.
[9] Baldi, F., Parati, F., Semplici, F. & Tandoi, V. (1993). Biological removal of inorganic
Hg(II) as gaseous elemental Hg(0) by continuous culture of a Hg-resistant Pseudomo‐
nas-Putida strain FB-1, World Journal of Microbiology and Biotechnology, 9, 275.
[10] Ball, J.W., McCleskey, R.B., Nordstrom, D.K., & Holloway, J.M. (2006). Water-chemis‐
try data for selected springs, geysers, and streams in Yellowstone National Park,
Wyoming, 2003-2005. U.S. Geological Survey Open-File Report 2006-1339. 137 p.
[11] Barkay, T., Gillman, M. & Turner, R.R. (1997). Effects of dissolved organic carbon and
salinity on bioavailability of mercury. Applied and Environmental Microbiology, 63,
4267-4271.
[12] Barringer, J.L., & MacLeod, C.L. (2001). Relation of mercury to other chemical constit‐
uents in ground water in the Kirkwood-Cohansey aquifer system, New Jersey Coast‐
al Plain, and mechanisms for mobilization of mercury from sediments to ground
water. U.S. Geological Survey Water-Resources Investigations Report, 00-4230.
[13] Barringer,.J.L., MacLeod, C.L., & Gallagher, R.A. (1997). Mercury in ground water,
soils, and sediments of the Kirkwood-Cohansey aquifer system in the New Jersey
Coastal Plain. U.S. Geological Survey Open-File Report 95-475.
[14] Barringer, J.L., Riskin, M.L., Szabo, Z., Reilly, P.A., Rosman, R., Bonin, J.L., Fischer,
J.M. & Heckathorn, H.A. (2010a). Mercury & methylmercury dynamics in a Coastal
Plain watershed, New Jersey, USA. Water, Air, and Soil Pollution, 212, 251-273.
[15] Barringer, J.L., & Szabo, Z. (2006). Overview of investigations into mercury in
ground water, soils, and septage, New Jersey Coastal Plain. Water Air, and Soil Pollu‐
tion, 175, 193-221.
[16] Barringer, J.L., Szabo, Z., Kauffmann, L.J., Barringer, T.H., Stackelberg, P.E. Ivahnen‐
ko, T., Rajagopalan, S. & Krabbenhoft, D.P. (2005). Mercury concentrations in water
from an unconfined aquifer system, New Jersey Coastal Plain. Science of the Total En‐

Yüklə 0,73 Mb.

Dostları ilə paylaş:
1   ...   13   14   15   16   17   18   19   20   ...   25




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə