International Journal of Engineering and Information Systems (ijeais)


International Journal of Engineering and Information Systems (IJEAIS)



Yüklə 268,11 Kb.
Pdf görüntüsü
səhifə3/4
tarix20.10.2023
ölçüsü268,11 Kb.
#128866
1   2   3   4
IJEAIS impact maqola

 


International Journal of Engineering and Information Systems (IJEAIS) 
ISSN: 2643-640X 
Vol. 5 Issue 4, April - 2021, Pages: 73-75 
www.ijeais.org/ijeais 
74 
RESULT AND DISCUSSION 
 
On a paper disk attached with a button to a cardboard base, there are two concentric circles depicting cylinders A and B of the 
Stern installation. From 
vectors of different lengths in different directions are plotted from their common center. These vectors depict flying silver atoms. 
On the circumference of a smaller 
the radius is marked with the point S - slit, and through it, with a dashed line, drawn trajectory (relative to the Earth) of silver 
atoms falling on the outer cylinder 
[
3
].
The work is carried out in pairs. One student aligning the dotted line with the edge transparent ruler, pencil begins to lead along the 
ruler. Another at this time holding behind the plastic holder-tongue, rotates the paper disk clockwise. With a fairly uniform 
rotation, following the trace left by a pencil on paper can qualitatively judge the trajectory of silver atoms relative to cylinders. 
Before starting the experiment, it is necessary to draw the attention of students to 
inadmissibility of sudden movements. 
The resulting curves, of course, only qualitatively demonstrate particle trajectories. However, they allow for a short time (5-10 
minutes) almost all students themselves “feel”
which way the silver atoms deviate
how the displacement of the projection of the slit on the external cylinder depends on the speed atoms
how the displacement of the projection of the slit on the external cylinder depends on the speed cylinders
why the projection with moving cylinders is wider than with motionless ones. 
If we compare the method of simulating mini-installations with computer 
models, then he undoubtedly wins in visibility. Firstly, such the installation is simple, and therefore understandable to everyone. 
Secondly, the generation that grew up on computer games, understands that "you can draw anything on a computer" and computer 
models use weak trust to illustrate phenomena 
students. Thirdly, when the student is forced to be the driving force of the installation, this maximizes his attention, which sharply 
increases the pace of development material. 
In addition, the methodology of simulating mini-installations wins by factor time. In order to figure out which buttons to press and 
in what format enter the initial data when modeling on a computer is also necessary time (sometimes exceeding simulation time), 
which is unfavorable for operation in the classroom. 
If you compare this technique with classic classroom demonstrations physicists, we can say that they can complement each other 
in terms of what mini-models can replace complex and dangerous devices that do not exist can't in the school lab. As for the demo 
models, It seems reasonable to replace them with mini models, as working with mini models can conducted individually and in 
pairs. It sometimes happens that from distant desks is difficult consider what the teacher demonstrates in the department, and it’s 
not always convenient to ask a question about the behavior of the installation in the process of explanation. In individual work the 
student has the opportunity, if necessary, to repeat the experience himself and understand or obscure aspects, raising a hand and 
asking the teacher 
[
4
]

In addition, the validity of complex demonstration models is dubious. Despite their complexity, these models remain models that 
explain visualizing real processes. And the complexity of the model can only interfere understanding. I will give an example of a 
demonstration model of the Stern experiment, which is a metal disk that can rotate around an axis, passing through its center. 
On its edge, the disk is limited to vertical side. With the help of vertical partitions attached to the side with inside, along the edge 
of the disk there are many cells. In the tripod foot clamp the inclined trough so that the ball, rolling along it, comes off 
gutters, having a horizontal directional speed, at a certain height above the center of the disk. 
Roll the ball when stationary and rotating drive. In this case, the ball enters into various cells on the edge of the disk. This The 
demo model has several disadvantages before the mini-installation. Firstly, it is difficult for students to compare the model 
described in the textbook and this model (the question arises "where is the second cylinder and where is the slit"). Secondly, the 
ball rolls too fast to follow the trajectory of its movement. Thirdly, the disk rotates in a horizontal plane, and to students from their 
places it's hard to see anything. 
Conclusion: the proposed method of modeling mini-installations for the purposes of explanations of complex physical phenomena 
are not only better than computer 



Yüklə 268,11 Kb.

Dostları ilə paylaş:
1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə