Jitter and Phase Noise The Fundamentals



Yüklə 0,57 Mb.
Pdf görüntüsü
tarix07.11.2018
ölçüsü0,57 Mb.
#78579


Technical Notes 

 

 



1

 

 



 

     


Jitter and Phase Noise 

 

Jitter and Phase Noise - The Fundamentals 

 

Preface 

Data transmission speeds and volume continue to increase to support unabated growth in traffic flowing 

over the Internet backbone largely due to the spread of movie and other content delivery services. The 

need for high-speed communications infrastructure is driving strong demand for high-frequency reference 

signal sources that provide stable output signals. One of the indicators used to evaluate the stability of 

these output signal waveforms is called "jitter." When used to express the stability of a high-frequency 

crystal oscillator, jitter indicates a deviation or variation in the period of waveforms for a digital signal 

during transmission. Here the basics of jitter and phase noise are explained. 

 

1. Jitter, a Key Indicator for Communications Equipment 

Waveforms of digital signals appear as a bright line on an oscilloscope. This bright line, which should 

oscillate at regular intervals, sometimes appears thick. This widening of the line is evidence of jitter.   

 

 

 



 

 

 



 

 

 



Figure 1 shows a single period, or cycle, of a signal in which multiple different periods are evident. An 

ideal waveform repeats an invariable cycle. Actual waveforms, however, vary in the time domain, with 

signal edges rising or falling earlier (red) or later (blue) than they are supposed to.   

Jitter is produced by things such as slight instabilities in electrical signal reading devices and interference 

along signal carrying pathways. If jitter is too extensive, adjacent signals interfere with one another, 

triggering deterioration in image and sound quality if the signals are transmitting movie or music data. 

Jitter is the result of time-domain fluctuations in digital signals, but jitter comes in a lot of different types. 

Jitter is hard to assess with a single numeric value because it changes minutely over time and because 

there is a variety of fluctuation patterns with respect to time.   

 

2. Types of Jitter



 

There are many types of jitter, including the following:   

- Period 

jitter 


(peak-to-peak) 

- RMS 


jitter 

- Random 

jitter 

- Deterministic 



jitter 

-  Accumulated jitter (long-term jitter) 

 

 

 



Amplitude 

Figure 1. The concept of jitter as indicator for evaluating the output 

waveform of a reference signal source 

Time 


Jitter

 

Actual 



waveform 

(

Red



: early)

Actual 


waveform 

(

Blue



: late)

 

Ideal waveform (black) 




Technical Notes 

 

 



2

 

 




Technical Notes 

 

 



3

 

 



 

jitter (DJ) comprise overall jitter components in a single cycle length.   

The key to reducing jitter is to reduce deterministic jitter. Optimizing this component causes the gap 

between right and left RJ to overlap so that it can exist as an ideal normal distribution.   

 

   


 

 

 



 

 

 



 

 

 



(5) Accumulated jitter (long term jitter) 

The types of jitter explained above were measurements   

of variation in reference to one cycle, or period, but there   

is a type of jitter that cannot be expressed in that way.       

That is accumulated jitter.   

Accumulated jitter is observed as variation in signal 

waveforms across multiple consecutive cycles, not just 

one cycle.   

The horizontal axis shows how many cycles were measured.   

The vertical axis shows it as 1-sigma for each respective cycle.   

Analyzing this jitter enables you to see the behavior of jitter   

that has consecutive cycles.   

Jitter for accumulated cycles shows a tendency for 1-sigma   

to converge from a certain cycle. This enables one to determine   

the PLL circuit bandwidth and transient response characteristics.   

 

3.  The relationship between oscillator output and jitter 

Crystal oscillators output frequency components outside the frequencies they are designed to output.   

As shown in Figure 6, the frequency characteristics of signals output by a crystal oscillator contain other 

frequencies in the vicinity of the fundamental frequency. This is produced by phase modulation due to 

random signals; that is, the noise source modulates the oscillator.   

Commonly called phase noise, these frequencies are almost always higher than the noise floor, appearing 

near the carrier frequency. When expressed as an equation, noise looks like this: 

 

 

 



 

 

 



 

 

 



Random Jitter

成分

Random Jitter



成分

Deterministic Jitter 成分

Peak to Peak jitter

より低


Jitter

を実現して行く


 

Peak to Peak Jitter 

Realizing lower jitter 

)

1



(

    


...

t     


f

sin2


A

V(t)


0

Formula

l

Idealsigna



)

2



(

     


...

     


(t))

t

f



E(t))sin(2

(A

V(t)



0

Formula

al

Actualsign





 

 

Amplitude 



Fig 6. Schematic diagram of the frequency characteristics of signal 

output by a crystal oscillator 

Frequency

Fundamental frequency 

Phase noise 

 

 



Power

Fig 7. Schematic diagram of SSB phase noise characteristics 

Frequency

Fundamental frequency (center frequency f

0

)

Phase noise 



1Hz

f

0



+f 

Offset frequency (f) 

Figure 4. Explanation of deterministic jitter 

1

2



3

4

n



Figure 5. Explanation of accumulated jitter

 



Technical Notes 

 

 



4

 

 



 

where E(t) is amplitude fluctuation (AM noise), φ(t) is phase fluctuation (PM noise). φ(t)is phase noise.   

Phase noise is usually stated as a ratio between carrier power and noise power at an offset frequency from 

the carrier. All phase noise is jitter. 

SSB (single sideband) phase noise L(f) is usually used to express phase noise. L(f) is a function of offset 

frequency f, the unit of which is dBc/Hz. Defined by the SSB phase noise power, it is the total power of 

an electrical signal in the 1 Hz bandwidth at a frequency fHZ away from the carrier (Figure 7).   

Phase noise C is expressed using the following equation: 

 

 

Since L(f) is noise, it must be converted to units of 1 Hz for comparison purposes. If A is the measurement 



bandwidth when phase noise is measured, then the measured phase noise is calculated by dividing it by A. 

For example, if phase noise was measured at -70 dBc in the 1 kHz measurement bandwidth, you would 

have -70dBc -30dB, yielding a result of -100 dBc/Hz. Since 1 Hz is 1/1000 of 1 kHz, the output per 

bandwidth would also be 1/1000 (= -30 dB). dBc/Hz is the standard unit for expressing phase noise. 

 

Phase noise arises from more than crystal oscillator circuits. When PLL circuits are used, phase noise is 



produced by circuit components, noise components, and loop characteristics, among other things. Phase 

noise indicates fluctuations in the phase of the signal. Therefore, when observed in the time domain, it 

appears as waveform jitter.   

 

4. Phase jitter 

Phase noise and jitter both indicate the stability of a signal, and are interrelated. Specifically, phase noise 

is the instability of a frequency expressed in the frequency domain, while jitter is fluctuation of the signal 

waveform in the time domain. 

The graph shows offset frequency on the horizontal 

axis and phase noise on the vertical axis. The part 

that corresponds to the integral value of this phase 

noise (the shaded area in Figure 8) is phase jitter and 

corresponds to RMS jitter.   

As for phase jitter, you can obtain a value for jitter 

that has components within a specific frequency 

range by calculating the integral value of a specific 

offset frequency range.   

 

The market demands characteristics that are suited for a variety of applications. Going forward, Epson 



will continue to provide crystal devices that have the performance customers need, including the right 

jitter and noise characteristics.   

 

 

)



3

(

     



...

     


 

 

 



 

bandwidth/

 

1Hz


 

 

 



fHz)

 

(



L(f)

Formula

signal

of

power

Total

the

at

Power

Frequency

Center



 

 

P



has

e N


ois



Fig 8 Image of phase Jitter 



Carrer Frequency 

Area 

Yüklə 0,57 Mb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə