Mathematics 1


called a unit vector. m is a unit vector if = 1



Yüklə 1,08 Mb.
səhifə2/5
tarix26.10.2023
ölçüsü1,08 Mb.
#131170
1   2   3   4   5
Vectors

called a unit vector.

m is a unit vector if = 1.

  • A unit vector in the direction
  • of a vector a is given by m =
    •  

    Sample problem 2


    • Triangles ABC and XYZ are equilateral.
    • X is the midpoint of AB, Y is the midpoint of BC, Z is the midpoint of AC.
    • =a ; =b ; = c
    • Express each of the
    • following in terms of ab

      and c.

    •  

    Sample problem 2 -answer


    • = c
    • =-a
    • = b+ c ( XCZ) or –a+2c ( AXC)
    • =b-a ( ZXB)or 2b-c ( ZBC) or -2a+c ( ABZ)
    • =2c
    •  

    c
    a
    b
    b
    ( ZXB)

    Vector Components

    • a = is a position vector
    • of the point P
    • ax and ay - the Cartesian
    • coordinates of P.
    • By Pythagoras' Theorem
    • =.

    • The unit vectors in 2D
    • corresponding to line

      segments of length one

      along the positive x and y

      axes are denoted by i and j.

    •  

    P
    O
    It follows from the triangle rule that we can write the position vector of the point P with Cartesian coordinates (ax; ay) as
    a= axi + ayj

    3D Vectors

    • The position vector a = of a point
    • P in 3D with Cartesian coordinates

      (x; y; z) is:

    • a = = axi + ayj + azk;
    • By 3D version of Pythagoras'
    • Theorem:

      =

    • Any 3D vector v can be written as a column matrix or a row matrix(a; b; c),and be resolved as:
    • v = ai + bj + ck; where i = (1; 0; 0), j = (0; 1; 0), k = (0; 0; 1).

      Zero vector – with components (0;0;0)

    •  

    O
    P

    Vectors’ addition and scalar multiplication in terms of components

    • Let a = (a1; a2; a3), b = (b1; b2; b3) be vectors then
    • a + b = (a1; a2; a3)+ (b1; b2; b3) = (a1 + b1; a2 + b2; a3 + b3)
    • Let k iz a scalar, then
    • ka =(k a1; k b1; k c1) -Multiplying a vector by a scalar will ONLY CHANGE its magnitude. Multiplying a vector by “-1” does not change the magnitude, but it does reverse it's direction
    • Example.
    • Vectors v and u are given by v = (4 ; 1) and u = (u1 ; u2),
    • find components u1 and u2 so that 2 v - 3 u = 0 .
    • Solution:
    • 2v -3 u =(2*4-3 u1; 2-3 u2)=u1=8/3 ; u1=2/3

    Scalar Product

    • Multiplying 2 vectors sometimes gives you a SCALAR quantity which we call the SCALAR DOT PRODUCT
    • The Dot product formula is given by:
    • a.b= cos()
    • For parallel vectors in the same
    • direction (a.b=

    • If they are in opposite directions then , cos = -1 and a.b= -
    • If a and b are orthogonal, then and cos =0 Hence, a.b = 0:
    • Conversely, if a.b = 0 and a and b are non-zero vectors, then cos = =0 and so
    •  

    P

    Properties of dot product

    Summarising we can list the dot product properties:

    • u · v = |u||v| cos θ
    • dot product with itself is non-negative : u⋅u=|u|2≥0
    • dot product is commutative: u · v = v · u
    • u · v = 0 when u and v are orthogonal.
    • u · v= |u||v| when u and v are parallel
    • 0 · 0 = 0
    • Scalar Multiplication Property : a(u·v) = (au· v= u  · (a v)
    • Distributive Property : (au + bv· w = (au· w + (bv· w


    Yüklə 1,08 Mb.

    Dostları ilə paylaş:
    1   2   3   4   5




    Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
    rəhbərliyinə müraciət

        Ana səhifə