Proceedings of the International rilem conference Materials, Systems and Structures in Civil Engineering 2016



Yüklə 8,6 Mb.
Pdf görüntüsü
səhifə28/175
tarix19.07.2018
ölçüsü8,6 Mb.
#56746
1   ...   24   25   26   27   28   29   30   31   ...   175

47

International RILEM Conference on Materials, Systems and Structures in Civil Engineering 

Conference segment on Service Life of Cement-Based Materials and Structures 

22-24 August 2016, Technical University of Denmark, Lyngby, Denmark 

 

of the reinforcement. The design of the minimum reinforcement according to the German 



version of Eurocode 2 [17] is mainly affected by the tensile strength at the time of cracking 

that may be derived from the calculated stress evolutions. In the parts of the structure where 

no cracking has to be expected, the minimum reinforcement can be reduced related to the 

calculated stress level. 

To ensure the correctness of the numerical investigations and the reinforcement design, 

monitoring measures for the temperature and strain evolution in the most critical parts will be 

installed in the construction phase. 

 

 



4. Conclusions 

 

In this paper, an application example for the control of early age cracking in a massive tunnel 



structure based on experimental investigations and numerical simulations was presented. 

An experimental program was carried out to characterise the material behaviour of the 

concrete at early ages. This included the testing of the heat of hydration, the evolution of the 

compressive strength, tensile strength and Young’s modulus and the autogenous shrinkage. 

For reasons of fire protection, a special concrete mix with PP-fibres was used. The high fly 

ash content in combination with a low heat slag cement lead to a relatively slow evolution of 

the mechanical properties and a long lasting growth of the compressive strength. The concrete 

showed a significant autogenous shrinkage that was compensated partly by a swelling at the 

beginning of the reaction. 

The experimental results were used as input parameters for numerical simulations of the 

temperature and stress evolution in the tunnel structure. The results of the thermal analyses 

show that the maximum temperature inside the concrete structure goes up to 57°C for the 

assumed boundary conditions. The restrained contraction of the structure due to the intense 

cooling down and the simultaneous shrinkage of the concrete lead to high tensile stresses and 

consequently to a high risk of cracking. 

To ensure the water tightness of the structure these stresses must be taken into account during 

the design of the reinforcement. Because the boundary conditions have been assumed for the 

worst case scenario, a high amount of reinforcement is necessary for crack width control. To 

ensure an economic design, further simulations will be carried out to check if a reduction of 

the reinforcement is possible when the construction process is optimised. This will include 

investigations on the influence of the climate during construction and the sequence of 

construction phases. Additionally, the temperature and strain evolution will be metrologically 

monitored during construction to check the reliability of the numerical results. 

 

 



References 

 

[1]  De Schutter, G., Taerwe, L.: Degree of hydration based description of mechanical 



properties of early-age concrete. Materials and Structures 29 (1996), 335-344 

[2]  Gutsch, A.-W.: Properties of early-age concrete – experiments and modeling. Materials 

and Structures 35 (2002), 76-79. 

[3]  Schindler, A.K.: Effect of temperature on hydration of cementitious materials. ACI 

Materials Journal 101 (2004), 72-81. 



48

International RILEM Conference on Materials, Systems and Structures in Civil Engineering 

Conference segment on Service Life of Cement-Based Materials and Structures 

22-24 August 2016, Technical University of Denmark, Lyngby, Denmark 

 

[4]  Lackner, R., Mang, H.A.: Chemoplastic material model for the simulation of early-age 



cracking: from the constitutive law to numerical analyses of massive concrete structures. 

Cement and Concrete Composites 26 (2004), 551-562 

[5]  Faria, R., Azenha, M., Figueiras, J.A.: Modelling of concrete at early ages: application to 

an externally restrained slab. Cement and Concrete Composites 28 (2006), 572-585. 

[6]  Briffaut M., Benboudjema F., Torrenti J.-M., Nahas G.: Effects of early-age thermal 

behaviour on damage risks in massive concrete structures. European Journal of 

Environmental and Civil Engineering 16 (2012), 589-605 

[7]  Buffo-Lacarrière L., Sellier A., Kolani B.: Application of thermo-hydro-chemo-

mechanical model for early age behaviour of concrete to experimental massive 

reinforced structures with strain–restraining system. European Journal of Environmental 

and Civil Engineering 18 (2014), 814-827 

[8]  Gutsch, A.-W., Laube, M., Nothnagel, R.: Crack control in a massive reinforced 

concrete foundation slab as concrete sandwich element for a water basin. Proceeding of 

the 8


th

 International Conference on Creep, Shrinkage and Durability Mechanics of 

Concrete and Concrete Structures (CONCREEP 8), Ise-Shima (2008), 647-654 

[9]  Gutsch, A.-W., Laube, M.: Crack control for the massive structures of the new central 

railway station in Berlin, Germany. Proceedings of the International Workshop on 

Control of Cracking in Early Age Concrete, Sendai (2000), 377-384 

[10]  Krauß, M., Rostásy, F. S., Budelmann, H.: Probabilistic concept for the validation of the 

effectiveness of countermeasures against early age cracking in massive concrete 

structures. Proceedings - Workshop Crack Risk Assessment of Hardening Concrete 

Structures, Trondheim (2005), 34-43 

[11] Zeiml, M., Leithner, D., Lackner, R., Mang, H. A.: How do polypropylene fibers 

improve the spalling behavior of in-situ concrete? Cement and Concrete Research 36 

(2006), 929-942 

[12] Carino, N. J.: The maturity method: theory and application. Cement, Concrete and 

Aggregates 6 (1984), 61-73 

[13] Gutsch, A.-W.: Creep and relaxation of early-age concrete. Creep, Shrinkage and 

Durability Mechanics of Concrete and other Quasi-Brittle Materials, Proceedings of the 

6

th



 International Conference CONCREEP-6@MIT, Cambridge (2001), 619-624 

[14]  Hermerschmidt, W., Budelmann, H.: Creep of early age concrete under variable stress, 

Proceedings of the 10

th

 International Conference on Mechanics and Physics of Creep, 



Shrinkage, and Durability of Concrete and Concrete Structures (CONCREEP 10), 

Vienna (2015), 929-937 

for basic creep of concrete. Materials and 

Structures 9 (1976), 3-11 

[16]  Honorio, T., Bary, B., Benboudjema, F.: Factors affecting the thermo-chemo-mechanical 

behaviour of massive concrete structures at early-age. Materials and Structures 48 

(2015), 1-19. 

[17] Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for 

buildings; German version EN 1992-1-1:2004 + AC:2010 



Yüklə 8,6 Mb.

Dostları ilə paylaş:
1   ...   24   25   26   27   28   29   30   31   ...   175




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə