Microsoft Word 210B5-2008. doc



Yüklə 29,08 Kb.
Pdf görüntüsü
tarix11.04.2018
ölçüsü29,08 Kb.
#37266


Geophysics 210 September 2008 

 

1



B5 : Gravitational potential and the geoid 

B5.1 Gravitational potential energy 

We have considered the Earth’s gravity field in terms of the acceleration that a test mass 

would experience (g).  

An alternative way to visualize the gravity field is by using the gravitational potential 



energy (U). This has some advantages because g is a vector while U is a scalar. 

 

Example 1 : Point mass at z = 0 

 

 

 

 

     

        

 

 



Each of the circles shown above represents an equipotential surface. That means 

no work is required to move a mass along the surface.

 

However, moving away from the mass requires that work is done and converted 



into gravitational potential energy.  

 



If you move towards the mass, then some gravitational potential energy is 

converted into kinetic energy (falling). 

 

The acceleration (pull) of gravity (g) is at right angles to the equipotential surface. 



 

Rate of change of potential with distance is proportional to gravitational 



acceleration (

U

−∇

=





 

 

 


Geophysics 210 September 2008 

 

2



Example 2 : g constant as elevation increases.  



U

−∇

=



 

  

Earth surface at z=0 

 

 



 

 

 



Example 3 : Point mass located just below the Earth’s surface 

 

 



 

Examples 1 and 2 can be combined to represent a mass buried in the Earth  



 

Note that this has the effect of bending the equipotential surfaces upwards. 



 

g always orthogonal to equipotential surfaces 



 

Equipotentials and the sea surface 

 



Water will flow downhill until it has reached the lowest possible level, since it is 

not rigid. Thus on a calm day, when ocean currents and weather are ignored, the 

sea surface is an equipotential surface. Large mounds of water do not persist in 

the open ocean! 

 

Suppose that there is some excess mass (high density) buried under the seafloor. 



This will distort the equipotential surface so that it bulges upwards and results in 

a small rise in sea level above the mass excess.  




Geophysics 210 September 2008 

 

3



 

Can also think of this as the mass excess pulling water towards itself. 



 

                 

 

Similarly, if there is a mass deficit (low density) then a slight depression will form in the 



sea surface. 

Question : Would this be a good place for water skiing?  

Hint - How is the pull of gravity related to the sea surface? 

 

5.2 The Geoid 

 



The geoid is defined as the equipotential surface that coincides with mean sea 

level. If the Earth had uniform density and no topography, then the geoid and 

International Reference Ellipsoid (IRE) would be identical.  

 

However, non uniform density and topography result in the geoid being relatively 



bumpy. 

 



In the oceans, the geoid is defined by the sea-level and can be measured with 

radar altimetry.  

 

On land the geoid corresponds to the level that a hypothetical ocean would have. 



Location must be computed from gravity measurements (land based and satellite 

data). See details of GRACE described below. 

 

Differences between geoid and 



IRE are called geoid 

undulations

An interactive program that calculates the height of the Geoid: 

http://www.ngs.noaa.gov/cgi-bin/GEOID_STUFF/geoid99_prompt1.prl

 

Geoid elevation in Edmonton = ______ m 




Geophysics 210 September 2008 

 

4



The geoid was increasingly well defined by satellite data collected from 1957 onwards. 

Long wavelength features are shown below.  

  

  



 

Undulations are 100 m above and 

below the IRE. Major hole in the 

Indian Ocean and a bulge over 

Indonesia and Australia. 

 



Geoid highs are caused by excess 

mass.    

 

Geoid lows caused by mass 



deficit 

A more detailed view of the geoid has come from the GRACE project (Gravity Recovery 

and Climate Experiment). This has been underway since 2002 and uses microwave 

measurements of the distance between two satellites to measure the gravity field with 

very high precision. (http://www.csr.utexas.edu/grace/) 

   


     

Geoid from GRACE data (m) 




Geophysics 210 September 2008 

 

5



5.3 Why is the geoid important?

 

5.3.1 Information about density structure in the interior of the Earth 

 

The geoid contains a lot of information about the internal structure of the Earth.  



 

Figure below shows the geoid superimposed on a topography map.  Red: -7.7 m 



Magenta =  -52.8 m.  

            



   

 



The long spatial wavelengths of geoid anomalies indicate that they originate in 

deep density contrasts that are associated with mantle convection.   

 



Observed geoid variations can be explained if density contrasts from subduction 

zones persist to mid-mantle depths (Hager, 1984). 



5.3.2 Surveying 

 



The geoid is always orthogonal to the local acceleration of gravity (g).  

 



Thus elevations measured with levelling (surveying) will be relative to the geoid 

and are expressed as heights above sea level.  

 

In contrast surveys that use GPS satellites will give elevations relative to the IRE.   



 

To reconcile the two measurements of elevation, the difference between the IRE 



and geoid (N) must be known. 

 

H = height above geoid (orthometric height) 



h = height above IRE (ellipsoidal height) 

N = geoid height (undulation) 

 

To illustrate this difference, consider a ship sailing across the Indian Ocean. GPS 



measurements will indicate that it drops into a 70 m deep hole. Conventional surveying 

tells us that it stays at sea level the whole time. 

More reading : 

http://en.wikipedia.org/wiki/Geoid

 



Geophysics 210 September 2008 

 

6



 

References 

Hager, B., Subducted slabs and the Geoid: constraints on mantle rheology, J. Geophys. 



Research89, 6003-6015, 1984. 

Han, S.C., C.K. Shum, M. Bevis, C.Ji, C.Y. Kuo, Crustal dilation observed by GRACE 

after the 2004 Sumatra-Andaman earthquake, Science, 313, 658-662, 2006.  

Richards, M. A. and B. Hager, Geoid Anomalies in a dynamic Earth, J. Geophys. 



Research89, 5987-6002, 1984. 

Tapley, B.D., D.P. Chambers, S. Bettadpur and J.C. Ries, Large scale ocean circulation 

from the Grace GGMo1 Geoid, Geophys. Res. Lett., 2004. 

 

         MJU 



2008 

Yüklə 29,08 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə