Rhic instrumentation



Yüklə 161,34 Kb.
Pdf görüntüsü
tarix06.02.2018
ölçüsü161,34 Kb.
#25771


RHIC Instrumentation

T. J. Shea and R. L. Witkover



Brookhaven National Laboratory

Upton, NY 11973 USA

Abstract. The Relativistic Heavy Ion Collider (RHIC)  consists  of two  3.8  km  circumference

rings utilizing 396 superconducting dipoles  and  492  superconducting quadrupoles. Each ring

will accelerate approximately 60 bunches of 10

11

 protons to  250  GeV,  or  10



9

 fully stripped

gold ions to 100  GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for

some of the 6 intersection regions scheduled for initial operation later in the year.  The  injection

line instrumentation includes: 52  beam  position monitor (BPM) channels, 56 beam loss

monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile

monitors. The collider ring instrumentation  includes: 667 BPM channels, 400 BLM channels,

wall current monitors, DC current transformers,  ionization  profile  monitors  (IPMs),  transverse

feedback  systems,  and  resonant Schottky monitors. The use of superconducting magnets

affected the beam instrumentation design. The BPM electrodes  must function in a cryogenic

environment and the BLM system must prevent magnet quenches from either fast or slow

losses with widely different rates. RHIC is the first superconducting accelerator to cross

transition, requiring close  monitoring  of  beam  parameters at this time. High space-charge due

to the fully stripped gold  ions  required  the IPM to collect magnetically guided electrons rather

than the conventional ions. Since polarized beams  will  also  be  accelerated in RHIC, additional

constraints were put on the instrumentation. The orbit must be well controlled to minimize

depolarizing resonance strengths. Also, the position monitors  must  accommodate large orbit

displacements within the Siberian  snakes  and  spin rotators. The design of the instrumentation

will be presented along with  results  obtained during bench tests, the injection line

commissioning, and the first sextant test.



OVERVIEW OF RHIC

Upon  completion in 1999, the Relativistic Heavy Ion Collider (RHIC) at

Brookhaven National Laboratory will accelerate and collide protons,  polarized protons,

and heavy ions (1) (2). Heavy ion collisions up to Gold on Gold at 100 GeV/u beam

energies will produce extended nuclear matter with energy densities an order of

magnitude greater than that of the nuclear ground state. This should result in

temperatures and matter densities that prevailed a few microseconds after the origin of

the universe. It is also believed that these extreme conditions could produce a phase

transition to a quark-gluon plasma. The Spin Physics program at RHIC will utilize

polarized protons at up to 250 GeV and 70% polarization. The primary goal is to study

the spin structure function of the proton.

The collider consists of two rings separated horizontally by 90 cm in a tunnel

3.834 km in circumference. Collision points are provided in six insertion regions that



are connected by six arcs. The total complement of magnets for both rings include 288

arc dipoles, 276 arc quadrupoles, 108 insertion dipoles,  and 216 insertion quadrupoles.

Additional magnets include 72 trim quadrupoles, 288 sextupoles, and 492 correctors.

All ring magnets are superconducting.

The Alternating Gradient Synchrotron (AGS) complex is the injector to RHIC.

Beam is extracted through the H-10 septum magnet into the AGS-to-RHIC (AtR)

transfer line as single bunches during a flat-top of the AGS magnet cycle. The AGS

cycle is repeated until each of the two RHIC rings are filled. The 1900-foot-long AtR

line consists of several sections,  starting as the “U-line”, becoming the “W-line,” the

branch into the “V-line” to the g-2 experiment. A switch magnet at the end of the W-line

directs beam into either the “X-line” or “Y-line” to the counter-rotating RHIC rings.

RHIC construction officially began in 1991. In the Fall of 1995,  the first part of the

AtR line was commissioned up through the W line. In February, 1997, beam was

transported to a temporary dump at the end of the  first sextant. Collider commissioning

will begin in early 1999 with project completion scheduled for June of that year.

Relevant parameters are listed in Table 1.



TABLE 1.

 

RHIC Parameters



Parameter

Value

Kinetic Energy, Injection-Top (each beam)

Gold: 10.8 – 100 GeV/u

Protons: 28.3 – 250 GeV

Luminosity, Au-Au at 100 GeV/u

2•10


26

 cm


–2

 s

–2



Operational lifetime, Gold

10 hours


No. of bunches/ring

60

No. of particles/bunch



Gold: 10

9

 (at times, a few 10



7

)

Protons: 10



11

 (upgrade, 3•10

11

)

Bunch length



from 20 ns down to 1 ns

Normalized Emittance, gold

Injection: 10

π

 mm mrad



After 10 hr: 40

π

 mm mrad



Filling mode

Bunch to bucket, 30 Hz peak rate

Filling time

1 min, each ring

Acceleration time

75 s


Revolution frequency

About 78 kHz

rf harmonic number

Acceleration system: h = 360

Storage system: h = 2520

Beta at crossing, H,V

During injection: 10 m

Low beta insertion: 2 m

Transition energy

γ

Τ



 = 22.89

Circumference

3833.845 m

Beam tube i.d. in arcs

69 mm

Vacuum, warm beam tube sections



7•10

–10


 mbar

Operating temp., helium refrigerant



< 4.6 K


INSTRUMENTATION

A list of the major instrumentation systems is provided in Table 2. Most of the

transfer line systems have already been installed and tested during the 1995 AtR

commissioning and the 1997 Sextant Test (3) (4) (5).  All of the listed systems are

expected to be available for collider commissioning in 1999, although some will provide

only a subset of potential functionality.



TABLE 2.

 

Table of Instrumentation



S y s t e m

Quantity

Position  monitors

52 measurement planes in transfer line

667 planes total in collider rings

Ionization profile monitors

One horizontal and one vertical per ring

Wall current monitors

One per ring

Transverse feedback

Two kicker units per ring (each provides

horizontal and vertical deflection)

Schottky cavities

One per ring (each provides horizontal, vertical and

longitudinal signals)

Transfer line intensity monitors

Five integrating current transformers

Loss monitors

120 ion chambers in the transfer line

400 ion chambers in the collider tunnel

Collider ring current monitor

One DCCT per ring

ATR BEAM PROFILE MONITORS

Video Profile Monitors (VPMs) are used in the AtR line (6). A total of 12 VPMs

were installed, any four of which can be viewed on a single transfer via a 4 

×

 16 video



multiplexer. Low mass phosphor screens minimize scattering and allow four profiles to

be acquired on a single bunch for an emittance measurement. VME-based image

processing electronics are used to acquire and process the data.

Gadolinium Oxy-sulfide doped with Terbium (Gd

2

O

2



S:Tb) phosphor was chosen

because it has low mass and can be deposited in a thin (0.002") coating. In order to see

individual profiles on successive transfers the light had to decay fully in 33 ms.

Chromium doped aluminum oxide (Chromox) has too long a decay time and is not

available in such thin sheets. Tests have shown Gd

2

O



2

S:Tb to fully decay faster than the

30 Hz camera frame rate. The screen is mounted at 45

o

 and pneumatically inserted. The



drive, viewing window and two lamp ports are on the same 8" conflat flange,

simplifying alignment. A 45

o

 first-surface mirror transfers the image to the camera over



a typical 300 cm path length. Screen durability has not been established but none have

been damaged in the low-intensity gold beam runs. Aluminum oxide screens  are used at

the  two upstream locations where intense proton beams are transported to the g-2

experiment.

Pulnix TM-7cn CCD cameras are used in all locations except in the AGS ring  tunnel.

Because typical CCD camera lifetime is 100 to 700 Rad, a Cidtek (3710D) charge

injection device (CID) camera, rated at 20 kRad, was used there, but failed after one



week. The dose was estimated to be consistent with  the expected life. Other alternatives

are to use an MRad version of the Cidtek camera or a Dage radiation hardened vidicon

camera. At most locations in the transfer line the cameras are mounted in 14" diameter

tubing inserted into the tunnel wall to provide gamma shielding. Since the light lasts

only a millisecond, the camera must either acquire the full frame at once (Cidtek) or have

an overlap period in which the odd and even fields are both sensitive (Pulnix). The

camera must be synchronized with the beam in this way or every other line on the

vertical display will be blank. More than 3 decades of light intensity is expected, but a

typical lens will only adjust over a 150:1 range. Lenses with a graded neutral-density

center spot can cover 3 decades but are very expensive and require a motor drive

interface. A simple device using solenoids to insert up to four neutral density filters

between the camera and the lens, providing a 20,000:1 range has worked well. A

500 mm f/5.6 reflector lens is used at most locations, but 1000 mm f/8 reflector lens

and 300 and 400 mm f/5.6  refractors are also used. About half of the cameras were

rotated 90

o

 to best match the beam aspect ratio with the orientation re-established in the



computer-generated display. The lens, camera, and filter array are aligned on an optical

rail using commercial optical mounting hardware. The rail sits on a sliding tray which

uses tapered pins for precision location, allowing rapid replacement. An inexpensive

“leveling” laser substituted for the camera and lens was used to align the optics.

Phosphor  screen grain size, air waves and mechanical motion are not significant

limitations on resolution for the AtR beam sizes, which range from several mm to

several cm at 2.5 sigma. With the screen at 45

o

, depth of field is a factor which can be



significant if the beam is well off center or vertically large. Camera resolution is limited

by the number of pixels and transmission and electronics bandwidths. Wideband

(6 MHz) analog fiber-optic links are used to preserve resolution over the longest

(1700 ft) run to the centrally located VME-based image processing electronics. The

resolution was calculated to be better than 0.25 mm using measurements and

manufacturer’s data for the cameras and lenses. Measurements of the fine fiducial marks

were consistent with the estimate.

FIGURE 1.

 

Video Profile Monitor display.




The acquisition and processing of the video data uses Imaging Technology Inc.

VME modules running under VxWorks. These include four IMA-VME-4.0 boards with

4 AMVS-HS acquisition modules, 2 CMCLU-HS Convolver arithmetic modules,  and 2

CMHF-H histogram/feature extractor modules. Forty-eight 512

×

512 frames, plus base



frames for background subtraction, and computational results can be stored on-board.  A

128


×

128 subset of the full frame can be generated either from a 4

×

4 convolution or a



region of interest (ROI), which can be pre-selected or dynamically determined by a

threshold setting. The full RHIC fill can be stored for these reduced data sets and later

sent over the LAN for higher level processing.  On-line real-time computations available

include: pixel-by-pixel base frame subtraction of full frame data, centroid of the full

frame, H and V projections, and sum of  all pixels. So far, only the full 512

×

512 frame



data has been used. High-level code was written to control and display the beam profiles

and calculate emittance. Figure 1 shows a typical profile display.



ATR BEAM INTENSITY MONITORS

Beam intensity is monitored at five junction points in the AtR line using Integrating

Current Transformers (ICT) and electronics manufactured by Bergoz (7). For the RHIC

sextant test, an ICT from the left injection arc was moved to the end of the string of

superconducting magnets. The design of the ICT provides passive pre-integration of a

fast current pulse, reducing the effect of core losses. The slower risetime signal is then

integrated and held for acquisition by the RHIC MADC (8). Initially noise from the

AGS extraction kicker, which is coincident with the beam, interfered with the signal, but

passing  multiple  turns of the tri-axial signal cable through a ferrite core significantly

reduced the pick up. Reliable signals were then obtained even for 10

7

 gold ions.



ATR BEAM LOSS MONITORS

The Beam Loss Monitors (BLMs) are ion chambers mounted on the vacuum flanges

downstream of each magnet. To limit the number of electronic channels while  providing

complete coverage, signals from the 120 detectors were grouped into 56 channels. The

electronics were located in four equipment  houses.  The BLMs, designed to be sensitive

one decade below the nominal 10

gold ion intensity, were able to monitor the losses for



beam intensities from 10

6

 to 2 



×

 10


7

 Au79 ions.

The BLMs are Tevatron ion chambers (9) modified by using an isolated BNC to

break the ground loop formed by the signal and HV cable shields. Rexolite is used

rather than PTFE for the insulators in the BNC and SHV connectors to improve the

radiation hardness. The ion chamber (10) consists of a 113 cc glass bulb filled with

argon to about 725 mTorr.  Each chamber is calibrated using a cesium-137 source. The

mean sensitivity in the middle of the plateau (1450 V) is 19.6 pA/R/h, with 95% within

(1.5 pA/R/hr of the mean. Where multiple detectors were used on a single channel,  they

were grouped by calibration with the average value used for the group.

The ionization current from the detector is fed to a low-leakage (less than 10 pA),

gated integrator and read out using the standard RHIC MADC. The integrator input pre-

integrates the electron signal with a millisecond time constant (comparable to the ion

collection  time),  greatly reducing noise from the kicker magnets which are time

coincident with the beam. To take full advantage of the pico-Amp sensitivity of the

detector and electronics, it was necessary to use non-tribo-electric cable (Belden 9054)

to reduce noise caused by  mechanical motion. These features resulted in the noise level

of about 10 pA observed during the AtR commissioning.




POSITION MONITORS

Position Monitor Electrodes

The beam position monitor (BPM) electrode assemblies for the collider ring and the

AtR line share a common mechanical design (11). Nearly all of the collider assemblies

operate at 4.2 Kelvin while the all of the AtR assemblies operate at room temperature.

They contain 23 cm long, shorted striplines with a carefully controlled 50-ohm

impedance. These large striplines couple enough power to allow accurate measurement

of low-intensity pilot bunches. The shorted design requires electronics with a low return

loss in order to control beam coupling impedance, but the static cryogenic load is

reduced by a factor of two over the more expensive back-terminated designs. The

assemblies are constructed of 316L stainless steel and are copper brazed in a hydrogen

reducing atmosphere. The resulting assembly is fully annealed and therefore

mechanically stable under extreme temperature  variations. The feedthrough is a coaxial,

glass-ceramic design supplied by Kaman Instrumentation. Unlike conventional ceramic-

kovar feedthroughs, these units can be reliably thermally cycled from a 300-degree

Celsius bakeout temperature down to a 4.2-Kelvin operating temperature while

providing excellent microwave performance. Over 1400 feedthroughs have been tested

and installed with no insulator failures. The cryogenic installation requires a special

cable to bring the signal to room temperature feedthroughs mounted on the cryostat.

These .141" diameter cables have a Tefzel insulator that provides increased radiation

hardness over the standard Teflon. To optimize thermal performance, the jacket is made

of stainless steel instead of copper and the central portion of the cable is thermally

stationed at the 55-Kelvin heat shield.

Most of the assemblies contain two opposing striplines and are oriented horizontally

or vertically such that the position measurement is made in the plane having the larger

beta function. These are designated Type 1 monitors; a cutaway view of one is  shown in

Figure 2.  In critical areas,  particularly in the insertion regions, the monitors allow

simultaneous measurement of horizontal and vertical position by including four

striplines. In order to match the expected beam size, they are constructed with either

large (Type 3) or small (Type 2) apertures. The collider ring contains 480 electrode

assemblies plus additional units for the spin rotators, Siberian snakes, and the beam

dumps. The AtR line contains 39 assemblies.

FIGURE 2.

 

Position monitor electrode assembly.



For  ease of commissioning, the offset between electrical centers of the position

monitors and the magnetic centers of the quadrupoles must be accurately characterized.

Even tighter constraints are imposed during polarized proton acceleration, which

requires accurate orbit control in order to avoid depolarizing spin resonances. Because




the main arc quadrupoles do not have individual trim supplies,  the position monitor

offset characterization cannot be easily performed online. Therefore, this offset was

surveyed during magnet assembly by performing the following procedure (12):

1.

 



The magnet center is measured relative to cryostat fiducials.  For  early units,  this

measurement was made with a magneto-optical technique (13). For later units, a

measurement coil was used.

2.

 



An antenna is inserted into the electrode assembly. The position of the antenna is

optically surveyed relative to the cryostat fiducials.

3.

 

An rf signal is injected into this antenna and the signal amplitudes at the position



monitor ports are measured. This provides a  measurement of the offset between

the electrical center and the antenna.

1.

 

The offset between the position monitor electrical center and the magnet’s center



is calculated. The estimated tolerance of the offset measurement is about 100 

µ

m



rms.

Position Monitor Electronics

Analog Sampler

Each channel of position monitor electronics employs a broadband sampler (14)

depicted in Figure 3. This circuit has evolved since publication of the 1995 reference,

but the basic design remains. All measurement planes are treated independently.

Therefore, dual-plane electrode assemblies (Type 2 and Type 3) are connected to two

independent electronic channels. Two channels are contained within the beam position

monitor module that will be described in the next section. As shown in  Table 2, the AtR

line requires 52 channels and the collider  rings require a total of 667 channels. All AtR

electronics are rack mounted in equipment buildings that are accessible during

operations. These signals are transported on 3/8-inch, solid, shielded coax between the

tunnel and the equipment building. Where possible, the collider ring channels are cabled

in a similar manner with 1/4-inch coax. Channels in the insertion regions,  injection area,

and dump area are all cabled this way with up to 150-meter-long runs. All other modules

are located in the tunnel and cabled to the appropriate electrodes with shorter, 2-meter-

long cables. These channels are all in cryogenic regions. The low vacuum should

minimize beam-gas scattering and the resulting radiation field at the electronics. In all

cases, the signal first passes through an attenuator and a coaxial, 135 MHz low-pass

filter before reaching the analog sampler. The filter rejects high-frequency, high-voltage

signals from short bunches  while the attenuator provides improved return loss. An

upgrade to higher cost diplexers will be considered if required in the future.

Switched

gain


calibrator

Track


and

Hold


Trigger

circuit


MUX

Track


and

Hold


Switched

gain


sum

20 MHz


Low pass

filter


20 MHz

Low pass


filter

Beam


signals

FIGURE 3.

 

Block diagram of the BPM analog sampler.




Referring again to Figure 3, a multiplexer (MUX) at the input to the sampler selects

between beam signals and an on-board calibration  pulser. This MUX can also swap the

input signals to allow observation of imbalance in the following electronics. Signals then

pass through matched 20 MHz, lowpass filters. These are Bessel filters with good

transient response. A high impedance sum circuit provides the input to a self-trigger

circuit. The trigger threshold is adjustable and the self trigger can be completely disabled

to allow external clocking. When the self trigger is enabled, an external gate is applied to

select a particular bunch. Independent delays are adjusted to assure that each signal is

sampled precisely at the peak. Track-and-holds with 14-bit linearity are used to sample

the signals. The output is digitized by a 16-bit ADC. In the AtR line every transported

bunch is sampled. This leads to a maximum acquisition rate of 30 Hz. In the collider

ring modules, a selected bunch is sampled turn by turn at the revolution frequency of

about 78 kHz.

Data Acquisition

Each analog sampler resides on a circuit board that also contains the data acquisition

hardware.  Each  board includes two 16-bit digitizers, a fixed point digital signal

processor (DSP) subsystem, an in-system programmable gate array, a beam

synchronous 

timing interface, and an IEEE1394 Serial Bus (Firewire) interface (15).

Two boards are packaged together in each module, but each board functions as a

completely independent position channel. The control system communicates with the

channels via shared memory in a VME/Firewire interface board. As shown in Figure 4,

up to 12 channels are connected to each interface board via the Firewire Serial Bus. In

the AtR line, a data record containing all the positions of all transported bunches is sent

to the shared memory on every AGS cycle. In the collider rings, the channels can

operate in different modes. During injection, a turn-by-turn record for each injected

bunch is written to shared memory. For the rest of the collider cycle, the channels will

periodically send a turn-by-turn record for a particular  bunch and simultaneously stream

signal averaged position data at 10 Hz.

up to 12 

modules per 

Firewire bus

2 channels, 16 bit

78 kSamples/s

Firewire bus

VME

1 Hz typical 



max. request rate

Front End 

Computer

Position 

Monitor 

Module


shared memory

VME/Firewire 

bridge

Position 



Monitor 

Module


error check

calculate

average

FIGURE 4.

 

Data flow from the BPM system.




Test results

Results from several tests are summarized in Table 3. To ease comparison, all

position amplitudes are normalized to the nominal 69 mm aperture of the RHIC arcs.

The bench tests were made on production prototypes of the final modules. All beam

tests were performed with similar but earlier prototype samplers.

TABLE 3.

 

Summary of Position Sampler Tests



T e s t

R e s u l t

Comment

Minimum measurable bunch intensity

5•10

8

 charges



Bench measurement

Maximum measurable bunch intensity

10

12

 charges



Bench measurement

Noise in turn by turn measurement

×

 



µ

m rms


Bench measurement, max. intensity

1 mm rms


Bench measurement, min. intensity

<10 

µ

m rms



Measured proton bunch in Tevatron

during store

Accuracy

±

100 



µ

m

Bench measurement,



5•10

8

 

12

< 1 mm

Orbit correction results from AtR test.

Includes other error sources.

Scatter in single pass, single bunch

measurement

20 


µ

m rms


Vertical scatter of bunches extracted

from AGS


Drift over 5 hours

±



µ

m

Calibration pulse injected into channel



during AGS extraction

±

25 



µ

m

Measured vertical orbit of bunches



extracted from AGS

RING BLM SYSTEM

BLM System Design

The primary function of the RHIC Ring BLM system is to prevent a beam-loss

quench of the super-conducting magnets. It will also provide quantitative loss  data for

tuning and loss history in the event of a beam abort. The system uses 400 AtR style ion

chambers, but since the AtR is single pass,  different electronics are employed. It has

been estimated that the RHIC superconducting magnets will quench for a fast (single

turn) loss > 2 mJ/g or a slow (100 ms) loss > 8 mW/g. This is equivalent to 78.3 krad/s

at injection (49.3 krad/s at 100 GeV/c) for uniform loss over a single turn and

4.07 rad/s at injection (0.25 rad/s at 100 GeV/c) for slow losses. This will yield a range

of signal currents from 5.5 mA for the injection fast loss level to 17.6 nA for a slow loss

quench at full energy. Allowing for studies results in a dynamic range of 8 decades in

detector current. The amplified signal is digitized at 720 Hz and continually compared to

programmable fast and slow loss levels which can cause a beam abort. This will halt

data acquisition, providing a 10-second history of the pre-abort losses.  BLM parameters

are adjusted during injection, magnet ramp and storage phases to set gains, fast and

slow loss thresholds, and abort mask bits on specific RHIC Event Codes.




The Detectors

The detectors and cable are as in the AtR line. Half of the ion chambers (198) are

mounted between the two RHIC Rings on the quadrupole cryostats using stainless steel

“belly bands.” This will not provide equal sensitivity to losses from each ring, but if

more precision is required a second detector can be added on the outer ring and either the

outputs of the two BLMs connected in parallel or the number of channels doubled.

Ninety-six BLMs are placed at insertion region quads. In the warm regions, 68 detectors

are mounted on the beam pipe at expected sensitive loss points. In addition, 38 BLMs

are available as movable monitors. Since the Ring BLM system is used for quench

prevention, redundancy is provided by separate HV power supplies for the two cables

which provide the bias voltage to alternate detectors. Further redundancy is not required

since the system is not to be used for personnel protection.



Electronics

The analog circuitry is packaged in an 8-channel module. A micro-controller module

manages up to 8 analog boards independent of the crate front-end computer (FEC),  once

the write list values have been set through high level code. This insulates the real-time

operations from the control system I/O, allowing the BLM system to operate during a

controls link failure. Commercial digital I/O and DAC modules are used to control the

HV power supplies. The electronics will be located in service buildings at 2,4,5,7,8,10

and 12 o’clock, allowing access during beam storage. Standard VME crates were

modified for the special needs of the BLM electronics. Tests indicated that the standard

±

12 V switcher power supplies were too noisy for the high sensitivity analog circuitry.



While DC-DC converters might have been used, due to limited real estate for the

converters and filters and the possibility of oscillator noise, it was decided incorporate a

separate linear 

±

15 V  supply  into the crate. A piggy-back board across the last nine P2



connectors provided a dedicated bus between the micro-controller module and the 8

analog modules and a means of supplying the 

±

15 V.


The Analog Module

Figure 5 shows  a simplified schematic of the analog section for one of the eight

channels on the Analog Module. An input low-pass RC filter, matched to the magnet

thermal time constant, integrates the fast loss impulse, greatly reducing the dynamic

range while providing a sufficiently fast rising signal to protect against a single turn  loss

quench. Back-biased, matched, low-leakage diodes (DPAD-5) protect the amplifier

input from high voltage spikes. The low-current amplifier (OPA627AU) is rolled off to

a 10 


µ

s rise time. To allow for BLM shielding differences, jumpers can set two alternate

gains. The front-end op-amp output is applied to a second  amplifier with programmable

gains of 1 or 10 prior to signal acquisition. The data is read at  720 Hz by a RHIC VME

MADC configured for 

±

10 V, 13 bits and stored in a 1 Mbyte on-board memory. An



optional off-board 360 Hz anti-aliasing filter is available. Readings can be taken at

additional times as required for specific applications. For the nominal jumper setting and

a buffer gain of 10,  one LSB represents 12.5 pA, comparable to the noise observed in

beam tests. Offsets, typically a few LSBs, are not adjustable since these  can be removed

in the higher level processing.



FIGURE 5.

 

Schematic of a typical channel of the BLM Analog Module.



The  front-end op-amp output also goes to an AD734BN analog multiplier which

provides a gain to compensate for the increased magnet quench sensitivity with current.

An 8-bit DAC sets the gain for all multipliers on a board. A high-pass (100 

µ

s) and



low-pass (20 ms) filter direct the signal to respective fast- or slow-loss comparators with

independent programmable references. The 8-bit reference DACs are sufficient due to

the magnet current compensation provided by the analog multiplier. Each comparator

can be masked to prevent a bad BLM from inhibiting the beam or to allow special

conditions. The gains, mask bits and trip levels may be changed by Events on the RHIC

Event Link. Any trip latches the states allowing the location to be determined. An  Altera

7128  chip  performs  all  logic  functions and communication with the BLM Micro-

controller module via the dedicated bus on the VME P2 backplane.



The Micro-Controller Module

The RHIC Control System talks to the BLM micro-controller (16) which controls

the BLM analog module. This was  necessary due to the large number of set-point

changes, particularly during injection, acceleration and transition. The micro-controller,

once in possession of the write-list, completely controls the BLM analog module,

freeing the FEC and allowing the BLM system to continue to provide beam loss  quench

protection even in the event of a controls failure. A Microchip PIC16C64 micro-

controller services the 256 byte registers on the BLM analog modules. A 64k 

ˇ

 16 bit


memory holds the write-lists for 256 RHIC Event codes  each associated with up to 255

address/data values. On detection of a specific Event, the corresponding write-list is

sequentially executed with the data (gain, fast/slow trip level...) going to a particular

register. Altera 9320 and 7128 gate arrays are used on the board.




BLM Test Results

Figures 6a and 6b show the losses from an 8 bunch transfer at 30 Hz for 2

ˇ

10

12



protons, 20 times RHIC intensity. The top trace is the analog output showing the signal

rising rapidly due to the loss from each bunch transfer. The signal then decays with the

100 ms front-end filter time constant. The middle trace of Figure 6a is the slow-loss

filter output with the fast losses rejected. The bottom trace is the comparator output  for a

2 V reference. The middle trace of Figure 6b is the  fast loss filter output, showing only

the electron component of the signal. The bunches did not have equal losses so the

comparator does not trip for every transfer. It is clear that the circuit has the ability to

discriminate between fast and slow losses.



FIGURE 6.

 

Eight bunch 2 



ˇ

 10


12

 proton transfer. a) Slow filter and comparator output.  b)  Fast  filter

and comparator.

FIGURE 7.

 

Loss data from the Sextant Test.




In January 1997, an Au

+79


 beam was injected into one ring of the first sextant of

superconducting magnets. BLMs were installed at their final locations, which for these

tests were on the inside of the Ring carrying the beam. Since the beam was single pass

and sufficient Ring electronics were not yet available, AtR electronics (integrators) were

used. The results of an average of two runs normalized to 10

8

 ions is shown in Figure



7. A large loss was purposely created at 600. With the BLMs located at the quads (about

15-meter interval) there is sufficient spatial resolution and dynamic range to determine

the direction of the beam causing the loss. In other runs, larger losses were purposely

generated requiring the integrator gain to be lowered and gate width to be reduced. The

observed integrator noise and offsets, of the order of a few LSBs, are similar to that

observed with the prototype Ring BLM electronics installed in the AtR line. These tests

indicted that the BLM system will have sufficient range to meet the design requirements.

THE RHIC RING BCM SYSTEM

System Requirements

The ring beam current monitor (BCM) must cover the range shown in Table 4.

Because studies intensities may be an order of magnitude lower, the intensity may range

from 1 


×

 10


9

 to 1.2 


×

 10


13

 charges or 12.5 

µ

A to 150 mA. RHIC is a storage accelerator



so the BCM must be able to measure DC current yet be able to observe bunch-stacking

at 30 Hz. Since the beam in RHIC will cross transition, the BCM bandwidth must allow

intensity changes over several turns to be observed, although at lower resolution.

Stability should be 

±

10 


µ

A over the 10-hour storage time.



TABLE 4.

 

RHIC Intensity and Current



Number

o f

Bunches

Gold (+79)

[Intensity

current]

Protons

[Intensity

current]

Pilot protons

[Intensity

current]

1

7.9 



×

 10


10

0.99 mA


×

 10



11

1.25 mA


×

 10



10

0.125 mA


57

(Nominal)

4.5 

×

 10



12

56.2 mA


5.7 

×

 10



12

/

71.1 mA



5.7 

×

 10



11

7.11 mA


120

9.5 


×

 10


12

118 mA


1.2 

×

 10



13

150 mA


1.2 

×

 10



12

15.0 mA


The Beam Current Monitor

A DCCT for each ring was purchased from Bergoz (17). The unit has remotely

switchable 50 and 500 mA maximum current ranges.  Modulator noise is less than 1 

µ

A



when integrated over 30

 

ms.  The  long  term stability has not yet been measured, but



sensitivity to temperature is consistent with the 5 

µ

A/ 



o

C quoted by the vendor. An RTD

mounted on the sensor will be used to correct for this effect. The unit was specified with

75-meter-long cables to allow front-end electronics to be removed from the RHIC

tunnel. However, preliminary tests indicate that the modulator noise is more than an



order of magnitude greater than with the standard 3-meter cables. This noise is not a

problem when viewed on the electronics low-pass output (~4 kHz high-order filter), or

when the wide-band output is integrated over 30 ms or more,  but higher frequency

measurements will be affected. Because the modulation is regular, the high over-

sampling makes it is possible to digitally filter much of this noise.  Certainly the result

will be better with the shorter cables which may be used for the RHIC commissioning.

The BCMs will be located in the warm region of the 2 o’clock sector, which will be

baked to 150

o

 C. The BCM housing has been designed to insulate the transformer core



from the heated beam pipe and prevent it from exceeding 60

o

 C. Thermocouples on the



detector will be used to interlock the heater blanket. The outer shell of the housing will

provide the bypass path for the wall current around the transformer.



BCM Data Requirements

Beam intensity information will be used in a number of ways which set different

requirements on the data as summarized in Table 5.

TABLE 5.

 

BCM Data Requirements



Measurement

Read Rate

R e s o l u t i o n

Data

High Resolution

(Decay Rate)

1 Hz


20 bits

Display each reading

Display 1000 point sliding avg

Medium Resolution

78 kHz

16 bits


Non real-time digital filtering

Display 1000 point sliding avg

Low Resolution

(Tuning)


720 Hz

13 bits


Average of last 72 readings

With 10 Hz display

Low Resolution

(Logging)

720 Hz

13 bits


Each reading recorded

In 10-second sliding memory

Injection

30 Hz


16 bits

Average over 33.3 ms

All bunch display

The long term beam decay rate will be monitored by a very high resolution, slow

update digital multimeter (DMM) for each Ring. Since loss rates of less than 10 

µ

A must



be detected, acquisition of 1 

µ

A or better will be needed. This 20-bit resolution will be



provided by a Keithley Model 2000 with a IEEE-488 interface, which can be

programmed to provide a rolling average, lessening the load on the FEC. Measurement

of the intensity at injection or around transition will require a faster acquisition at

medium resolution. A 16-bit, 16-channel, 100 kS/s/channel ADC with 4 Mbytes on-

board memory will be used to read at the 78 kHz revolution frequency. This data,

suitably averaged, will also be used at injection to track the bunch stacking. The

modulation noise on the signal is highly periodic and amenable to digital filtering to

obtain sub-millisecond non real-time intensity information. A standard RHIC  MADC

will provide the 720 Hz low-resolution (13-bits plus sign). The low-pass output BCM

signals will be stored in a 10-second deep memory which will be available in the event

of a beam abort. An average of 72 MADC readings will be used to provide a display at

10 Hz for tactile feel tuning.




WALL CURRENT MONITOR

The wall current monitor system incorporates ferrite loaded pickups based on the

design by Weber (18). One pickup is installed in each ring. The ferrite has been selected

to attain a flat frequency response down to 3 kHz with a transfer impedance of 1 ohm.

The response extends to 6 GHz, which is well above pipe cutoff. Interfering modes will

be attenuated by microwave absorber installed on either side of the pickup. A calibration

port has been included.

The signal from the pickup will be digitized by a LeCroy LC584AL oscilloscope.

This scope has bandwidth of 1 GHz and will digitize in 8 Gsa/s bursts at a trigger rate of

up to 30 kHz. The scope is controlled and read out over GPIB by a computer running

LabVIEW. This software is based on a similar application developed at Fermilab by

Barsotti (19). The RHIC control system communicates with this application via shared

memory on a VME/MXI interface board. The entire system is event driven and

synchronized by the RHIC beam synchronous event system.  Functions provided by the

system are summarized in Table 6.

TABLE 6.

 

Wall Current Monitor Functions



Function

Features

Injection and acceleration bucket fill pattern

Reports integrated charge within each of the 360

buckets, and total charge

Store bucket fill pattern

Reports integrated charge within each of the 2520

buckets, and total charge

Bunch profile and beam centroid

Mountain Ranges

Calculated bunch parameters

length, peak current, area...

Spectral waterfall

Time resolved frequency domain view

IONIZATION PROFILE  MONITORS

The ionization profile monitors (IPM) collect electrons that are produced as a result

of beam-gas interactions (20). Two monitors will be installed in each ring, one

horizontal and one vertical. Because the dispersion is non-zero at the location of the

horizontal IPM,  the measured beam width will be affected by both the transverse

emittance and the momentum spread. A desirable future upgrade will be the addition of a

horizontal monitor in an area of high dispersion.

The  strong  space charge field of the RHIC beam affects the both the ions and

electrons that are produced from the residual gas interactions. However, the electrons

are easily confined to a small Larmor radius by a weak magnetic field. Therefore, a

permanent magnet dipole is installed over the vacuum chamber. The confined electrons

are swept out of the beam in a few nanoseconds by an applied electric field. Meanwhile,

the ions are slowly accelerated in the opposite direction where they pass through an

electron suppression grid near the opposite wall. The extracted electrons are amplified

by a two stage chevron microchannel plate. The resulting charge is collected on 64



striplines that are spaced 0.6 mm center to center. Special preamplifier hybrids designed

by the BNL Instrumentation Division are used to integrate, shape and buffer the signal

before transmitting it out of the tunnel.

Gold  beams will give single-bunch profiles, while proton beam profiles will be

generated by integrating the signals from all bunches for several turns.  With 10

9

 gold



ions/bunch, beam width measurement will be  accurate to 

±

3%. To keep the MCP from



saturating with gold beams (signal from proton beams is too small to saturate  MCP), the

sweep  field will be turned on only during data collection. There will be two

measurement modes:

1.

 



The profile of a single bunch will be measured on every turn. The sweep field

will be off during the passage of all other bunches.

2.

 

Every bunch will be measured for one complete turn. The sweep field will be left



off for 100-1000 turns for the MCP to recover.

The system block diagram is shown in Figure 8. All timing is controlled by the beam

synchronous event system. The 10 Msample/s, 12  bit ADCs consist of 8 channel VME

boards with 128 ksamples of memory behind each channel. These digitizer boards and

the timing board reside in the control system front end computer.

A prototype IPM was successfully tested during the 1997 sextant test. Single-pass

profile measurements of bunches containing 10

8

 Gold ions were made. Beam widths



agreed at the few percent level with those measured by the VPM system.

 

Voltage and Current



Readbacks

Voltage Set

10 MSPS ADC's

fast

switch

I

P

M

MCP

in

out

sweep

elec. sup.

64

channels

TUNNEL

INTRUMENTATION CONTROL ROOM

MCP Bias Voltage

Sweep Voltage

voltage

divider

Preamps

and

Shapers

voltage

divider

M

A

D

C

D

A

C

Timing

FIGURE 8.

 

Block diagram of the Ionization Profile Monitor system.




TRANSVERSE FEEDBACK  SYSTEM

The transverse feedback system will provide the following functions.

 

Excitation of coherent betatron motion for diagnostics using one of the



following modes:

1.

 



Single kick (50 

µ

m amplitude at storage energy, expected decoherence



time of a few hundred turns)

2.

 



Random sequence of kicks (larger betatron line, more emittance growth)

3.

 



Swept frequency

 



Phase Lock Loop tune tracking

 



Damping of injection errors

 



Damping of transverse instabilities

The single kick and random kick modes will be provided for tune measurement

during commissioning. All other functionality will be developed as experience is gained

during operations.

The kicker system employs 50-ohm stripline kickers. Each unit is 2 m long and has

four electrodes thus providing both horizontal and vertical deflection. Each ring has two

units that will be wired in series for early operations. To provide large deflections at

reasonable cost,  the kickers are driven by solid state, switched pulsers capable of

delivering up to 3 kV, 50 ns pulses at the revolution frequency of 78 kHz. Therefore, a

selected  bunch  can be kicked turn by turn. After operational experience is gained,

wideband linear amplifiers may be employed to drive one kicker unit per ring.  This will

allow development of a phase lock loop tune tracker and bunch by bunch feedback for

damping potential instabilities.

The digital electronics consists of a Motorola VME based processor board and a

Technobox PMC module for digital I/O. The VME board contains a  300 MHz PowerPC

that will process the of 78 ksample/s turn by turn data stream while the PMC module

contains an Altera gate array that will handle the 9.4  Msample/s bunch by bunch data

stream. For tune measurements during early operations, turn by turn data from the

standard position monitor channels will be used. Later, dedicated position monitor

electronics will provide low noise, bunch by bunch measurements.



SCHOTTKY SYSTEM

A high frequency cavity from Lawrence Berkeley National Laboratory will be used

to detect high frequency Schottky signals. Although somewhat harder to interpret than

signals at lower revolution harmonics, these high-frequency signals  suffer less

contamination from coherent power (21). The cavity’s transverse modes of interest are

the TM


210

 and the TM

120

 at about 2.1 GHz.  These two modes have a measured Q of



about 4700 and are separated by 4 MHz. A longitudinal mode is at 2.7 GHz.

The  signals will be carried from the tunnel on 7/8" solid shield coax to a digital

signal analyzer located in the instrumentation control room. This analyzer has a 10 MHz

bandwidth. During commissioning,  the system will be locally operated. As certain data

proves useful, it will be made available to the control system through a shared memory

interface.



ACKNOWLEDGMENTS

The  following  are among the many who have contributed to RHIC beam

instrumentation systems: P. Cameron, P. Cerniglia, B. Clay, R. Connolly, J. Cupolo,



C. Degen, A. Drees, M. Grau, L. Hoff, D. Kipp,  W.  MacKay, J.  Mead, R. Michnoff,

R. Olsen, V. Radeka, W. A. Ryan, T. Satogata, H. Schmickler, D. Shea,  R.  Sikora,

G. Smith, S. Tepikian, E. Tombler, N. Tsoupas, J.  Weinmann, P.  Zhou, P.  Ziminski,

E. Zitvogel.

This work was supported by the U. S. Department of Energy.

REFERENCES

[1]


 

RHIC Design Manual, April 1998.

[2]


 

Peggs, S., “RHIC Status,” presented at the 1997 Particle Accelerator Conference,

Vancouver, BC, May 1997.

[3]


 

Shea, T. J.,  et. al., “Beam Instrumentation for the RHIC Sextant Test,” Proc. of



the 4

th

 European Particle Accelerator Conference, 1994, pp. 1521–1524.

[4]


 

MacKay, W. W., et. al.,  “AGS to RHIC Transfer Line: Design and Commission-

ing,”  Proc. of the 5

th

 European Particle Accelerator Conference, 1996,

pp. 2376–2378.

[5]

 

Shea, T. J.,  et. al., “Performance of the RHIC Injection Line Instrumentation



Systems,” presented at the 1997 Particle Accelerator Conference, Vancouver, BC,

May, 1997.

[6]

 

Witkover, R. L.,  “Design of the Beam Profile Monitor System for the RHIC



Injection Line,” Proc. 95 Particle Accel. Conf, 1995, p. 2589.

[7]


 

Bergoz, 01170 Crozet, France.

[8]

 

Michnoff,  R.,  “The  RHIC  General  Purpose  Multiplexed Analog-to-Digital



Converter System,” Proc. 95 Particle Accel. Conf, 1995, p. 2229.

[9]


 

Shafer, R.  E.,  et al.,  “The Tevatron Beam Position and Beam Loss Monitoring

Systems,” Proc. The 12

th

 Int’l. Conf. High Energy Accel., 1983, pp.609.

[10]


 

Troy-onic Inc., 88 Dell Ave, P.O. Box 494, Kenvil, NJ 07847.

[11]

 

Cameron, P. R., et. al, “RHIC Beam Position Monitor Characterization,” Proc. 95



Particle Accel. Conf., 1995, p. 2458.

[12]


 

Trbojevic, D., et. al,  “Alignment and Survey of the Elements in RHIC,” Proc. 95



Particle Accel. Conf., 1995, p. 2099.

[13]


 

Goldman, M. A., et. al., “Preliminary Studies on a Magneto-Optical Procedure for

Aligning RHIC Magnets,” Proc. 93 Particle Accel. Conf, 1993, p. 2916.

[14]


 

Ryan, W. A. and T. J. Shea, “A Sampling Detector for the RHIC BPM

Electronics,” Proc. 95 Particle Accel. Conf., 1995, p. 2455.

[15]


 

Shea, T.  J.,  et. al., “Evaluation of IEEE 1394 Serial Bus for Distributed Data

Acquisition,” presented at the 1997 Particle Accelerator Conference, Vancouver,

BC, May, 1997.

[16]

 

Michnoff, R., see “http://www.rhichome.bnl.gov:80/Hardware/lossmon1.htm”



[17]

 

Loc. Cit. Reference [7]



[18]

 

Weber, R. C., “Longitudinal Emittance: An Introduction to the Concept and Survey



of Measurement Techniques Including the Design of a  Wall Current Monitor,” AIP

Conf. Proc. 212, 1989, p. 85.

[19]


 

Barsotti, Jr., E. L., “A Longitudinal Bunch Monitoring System Using  LabVIEW

and High Speed Oscilloscopes,” AIP Conf. Proc. 333, 1995, p. 466.

[20]


 

Connolly, R.  C.,  et. al., “A Prototype Ionization Profile Monitor for RHIC,”

presented at the 1997 Particle Accelerator Conference, Vancouver, BC, May, 1997.

[21]


 

Goldberg, D. A. and G. R. Lambertson, “A High Frequency Schottky Detector for



Use in the Tevatron,” AIP Conf. Proc. 229, 1991, p. 225.

Yüklə 161,34 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə