Impacts of high-latitude volcanic eruptions on enso and amoc



Yüklə 134,84 Kb.
Pdf görüntüsü
tarix21.04.2018
ölçüsü134,84 Kb.
#39492


Impacts of high-latitude volcanic eruptions on ENSO

and AMOC


Francesco S. R. Pausata

a,1


, Leon Chafik

a,b,c


, Rodrigo Caballero

a

, and David S. Battisti



d,e

a

Department of Meteorology, Stockholm University and Bolin Centre for Climate Research, 10691 Stockholm, Sweden;



b

National Oceanic and Atmospheric

Administration/National Environmental Satellite, Data, and Information Service Center for Satellite Application and Research, College Park, MD 20740;

c

Cooperative Institute for Climate and Satellites, University of Maryland, College Park, MD 20740;



d

Department of Atmospheric Sciences, University of

Washington, Seattle, WA 98195; and

e

Uni Research, 5008 Bergen, Norway



Edited by Benjamin D. Santer, Lawrence Livermore National Laboratory, Livermore, CA, and approved September 16, 2015 (received for review May 11, 2015)

Large volcanic eruptions can have major impacts on global climate,

affecting both atmospheric and ocean circulation through changes

in atmospheric chemical composition and optical properties. The

residence time of volcanic aerosol from strong eruptions is roughly

2

–3 y. Attention has consequently focused on their short-term



impacts, whereas the long-term, ocean-mediated response has

not been well studied. Most studies have focused on tropical erup-

tions; high-latitude eruptions have drawn less attention because

their impacts are thought to be merely hemispheric rather than

global. No study to date has investigated the long-term effects of

high-latitude eruptions. Here, we use a climate model to show that

large summer high-latitude eruptions in the Northern Hemisphere

cause strong hemispheric cooling, which could induce an El Niño-

like anomaly, in the equatorial Pacific during the first 8

–9 mo after

the start of the eruption. The hemispherically asymmetric cooling

shifts the Intertropical Convergence Zone southward, triggering a

weakening of the trade winds over the western and central equa-

torial Pacific that favors the development of an El Niño-like anom-

aly. In the model used here, the specified high-latitude eruption

also leads to a strengthening of the Atlantic Meridional Overturn-

ing Circulation (AMOC) in the first 25 y after the eruption, followed

by a weakening lasting at least 35 y. The long-lived changes in the

AMOC strength also alter the variability of the El Niño

–Southern

Oscillation (ENSO).

high-latitude volcanic eruptions

|

AMOC


–ENSO interaction

|

volcanism



P

roxy data (1, 2) suggest that the strong reduction of surface

insolation over the tropics associated with tropical volcanic

eruptions may increase the likelihood of the El Niño

–Southern

Oscillation (ENSO) and a consequent reduction of the zonal sea

surface temperature (SST) gradient along the equatorial Pacific.

Modeling studies do not yield consistent results and show both

an El Niño-like (3

–5) or La Niña-like (6, 7) anomalies following

a tropical eruption. Recent studies have also suggested that

volcanic eruptions can have a large imprint on ocean circulation,

affecting the strength of the Atlantic Meridional Overturning

Circulation (AMOC) (8

–12) on 5- to 20-y timescales and in-

ducing ocean heat content (OHC) anomalies (13, 14) that may

persist for decades. However, this slow recovery has been

questioned and may be an artifact of experimental design (15).

Furthermore, all previous work on the climate impact of volcanic

eruptions has focused on tropical volcanoes; no studies have

addressed the potential effects of high-latitude eruptions on

ENSO. Here, we use a coupled atmospheric

–ocean–aerosol model

[Norwegian Earth System Model: NorESM1-M (16, 17)] to identify

the mechanisms by which high-latitude volcanic eruptions can

impact ENSO behavior in both the short term (up to 2

–3 y) and

long term (approximately half-century), the latter being medi-

ated by volcano-induced changes in ocean circulation.

We simulate an extreme high-latitude multistage eruption

starting on June 1st. We inject 100 Tg of SO

2

and ash



—as an

analog for the ash injection

—mostly into the upper-troposphere/

lower stratosphere over a 4-mo period. The eruption is composed

of eight injections, each lasting for 4 d and spaced out every 15 d

(

SI Appendix, Table S1



). This experimental design was chosen as

analog for one of the strongest high-latitude eruptions in his-

torical time, the 1783 Laki eruption in Iceland. The simulated

volcanic eruption starts from a specific year selected from a tran-

sient historical simulation (1850

–2005). An ensemble of simulations

(ENS

v

) is generated by slightly perturbing the initial conditions



of the day of the eruption. In the same fashion, we generate an

equivalent no-volcano ensemble (ENS

nv

) where the volcanic aerosol



concentration is set to background conditions (

SI Appendix

). The

climate perturbation induced by the volcanic eruption (



Δ

v

) can



be simply expressed as

Δ

v



= STATE

v

– STATE



nv

, where STATE

nv

is the unperturbed climate state, and STATE



v

is the climate state

induced by the eruption. To examine the short-term impact on

ENSO, we analyze the simulations described by Pausata et al. (18)

in which ENS

nv

and ENS



v

are composed of 20 pairs of simulation,

each pair being integrated for 4 y. Here, we extend 10 of these

pairs of simulations out to 60 y after the eruption to investigate its

long-term impact on the AMOC, OHC, and the spatiotemporal

properties of ENSO.

Short-Term Impacts on ENSO

Our results show that the simulated volcanic eruption generates

an aerosol plume that is strictly confined to the Northern

Hemisphere in the months following the eruption, with no direct

radiative forcing on the tropical zone (

SI Appendix, Fig. S1

).

Despite this latitudinally restricted forcing, anomalous El Niño-



like conditions relative to the no-volcano case appear in the tropical

Pacific, peaking between 4 and 9 mo after the beginning of the

Significance

In the model simulations analyzed here, large high-latitude vol-

canic eruptions have global and long-lasting effects on climate,

altering the spatiotemporal characteristic of the El Niño

–Southern

Oscillation (ENSO) on both short (



<1 y) and long timescales and

affecting the strength of the Atlantic Meridional Overturning

Circulation (AMOC). In the first 8

–9 mo following the start of the

eruption, El Niño-like anomalies develop over the equatorial Pa-

cific. The large high-latitude eruptions also trigger a strengthen-

ing of the AMOC in the first 25 y after the eruption, which is

associated with an increase in ENSO variability. This is then

followed by a weakening of the AMOC lasting another 30

–35 y,


associated with decreased ENSO variability.

Author contributions: F.S.R.P. designed and performed research; F.S.R.P. and L.C. analyzed

the data; L.C., R.C., and D.S.B. contributed to the interpretation of the model results;

F.S.R.P. wrote the paper; and L.C., R.C., and D.S.B. contributed to the writing of the

manuscript.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

1

To whom correspondence should be addressed. Email: francesco.pausata@misu.su.se.



This article contains supporting information online at

www.pnas.org/lookup/suppl/doi:10.

1073/pnas.1509153112/-/DCSupplemental

.

www.pnas.org/cgi/doi/10.1073/pnas.1509153112



PNAS Early Edition

|

1 of 5



EARTH,

ATMOSPHERIC,

AND

PLANETARY



SCIENC

ES



eruption (Fig. 1

B and C). The El Niño-like anomaly is followed

by cold (La Niña-like) anomalies in the second and third year

(Fig. 1


C and

SI Appendix, Fig. S5

). The El Niño-like anomaly is

caused by the strong cooling of the extratropical Northern

Hemisphere following the eruption (Fig. 1

A). It is well estab-

lished that such interhemispherically asymmetric forcing pushes

the Intertropical Convergence Zone (ITCZ) away from the

hemisphere that is cooled (19, 20). Hence, the simulated high-

latitude eruption causes a southward shift of the ITCZ of

∼5–6°

latitude over the Pacific Ocean, bringing the ITCZ closer to the



equator during the fall and winter following the eruption (Fig.

1

A and



SI Appendix, Figs. S2 and S3

). Because surface easterly

winds are weakest in the proximity of the ITCZ, this equator-

ward shift implies a weakening of the easterly winds along the

equator in the central and eastern equatorial Pacific (i.e., a

westerly anomaly; Fig. 1

B and

SI Appendix, Fig. S4



). This leads

via the Bjerknes feedback (21) to a reduction in the east

–west

temperature contrast across the tropical Pacific, thus favoring an



El Niño-like anomaly. The El Niño-like anomaly is a function of

the Northern Hemisphere cooling, but may be influenced by the

preexisting ENSO state: a stronger El Niño-like response may

develop under La Niña compared with El Niño preexisting

conditions (

SI Appendix, Fig. S5

).

In light of our results, we find intriguing that the El Niño event



that peaked in January of 1912, 6 mo before the Katmai eruption

in June of 1912 (the largest high-latitude eruption of the 20th

century), was immediately followed by near-normal conditions in

the tropical Pacific rather than the La Niña conditions that

normally occur after El Niño events. Another El Niño event

occurred a year after the eruption (

SI Appendix, Fig. S6

). Fur-


thermore, tree-ring data (22) suggest that the El Niño conditions

preceding the Laki eruption were further strengthened in the

winter of 1783

–1784 (6–9 mo after the beginning of the erup-

tion), in agreement with our findings. However, further evidence

would be needed to test our model results using observations.

Long-Term Impacts on ENSO and AMOC

The impacts of a multistage high-latitude volcanic eruption may

not be limited to the first few years following the eruption: our

model experiment also shows strong effects on SST variability in

the Nino3.4 region and much of the eastern equatorial Pacific

that persist for nearly a half-century following the eruption (Fig.

2). Impacts on ENSO frequency, on the other hand, are weak

and not statistically discernible (

SI Appendix, Tables S3 and S4

).

ENSO variability increases in the first 25 y following the eruption



(Fig. 2

A), whereas it is reduced in the last 35 y of the simulation

(years 26

–60), particularly between 26 and 45 y after the eruption

(Fig. 2

B and


SI Appendix, Table S2

) after which ENSO variability

reverts to normal (Fig. 2

C).


Along with these changes in ENSO variability, we also find

marked changes in the AMOC (Fig. 3

A). After a brief (<6-mo)

weakening of the AMOC, a progressive AMOC strengthening

takes place and peaks with a maximum anomaly of about 1.5

sverdrup (Sv) (1 Sv

= 10

6

m



3

/s) between 5 and 10 y after the

eruption (Fig. 3

A). Thereafter, the AMOC starts to slow down

and reaches a minimum (

∼1 Sv below that in the unperturbed

ensemble) about 35

–40 y after the eruption. Although a slow

recovery is apparent after this period, the AMOC remains sig-

nificantly weaker than in the no-volcano ensemble from 25 y

after the eruption until the end of the analyzed period. The nega-

tive radiative forcing from the volcanic aerosol results in a surface

cooling that develops during the first 1

–3 y after the eruption

(

SI Appendix, Fig. S8A



) and is gradually transferred into the

deep ocean (Fig. 3

B). The surface cooling also causes reduced

-0.2


0.2

-0.4


-0.6

0.6


0.4

0

-0.8



SST and Wind (SONDJF) anomalies

NINO3.4 Index

2 m/s


180°W

150°W


90°W

120°W


JUN01

JUN03


JUN02

JUN04


JUN05



Temperature Anomaly (°C)



Precipitation Anomaly (mm/day)

-4

-3



-2

-1

0



1

2

3



-2

-1.5


-1

-0.5


0.5

1

1.5



-10

   0


4

2

10



20

30

40



50

60

70



ITCZ

Latitude (°)

SST

Anomalies (°C)

(°C)


Time(months)

0

15°S



15°N

ITCZ

NV

V

0.8


A

B

C



Fig. 1.

Temperature, precipitation and wind anomalies following the eruption. (A) Ensemble average change (ENS

v

minus ENS



nv

) in the zonal-mean surface

temperature (blue) and precipitation (green) over the Pacific basin (150°E to 90°W), for the period 4

–9 mo following the start of the eruption (September to

February). Shading shows the approximate 95% confidence intervals (twice the SEM) of the change seen in all 20 pairs of experiments. The bold green dashed

lines show the ensemble-averaged position of the ITCZ in the no-volcano and volcano simulations. (B) Ensemble average changes in near-surface wind

(arrows) and SST (shading) 4

–9 mo following the start of the eruption. The box shows the Nino3.4 area. The contours delineate the areas where the SST

anomalies are significant at the 95% confidence level using a Student t test. (C) Ensemble average changes in Nino3.4 index due to the eruption.

2 of 5


|

www.pnas.org/cgi/doi/10.1073/pnas.1509153112

Pausata et al.



precipitation (

SI Appendix, Figs. S3 and S8B

) and consequently

reduced river runoff at mid-to-high latitudes of the Northern

Hemisphere. Cooler, more saline surface conditions in the first 2

or 3 y (


SI Appendix, Fig. S9

) increase the density of the surface

water in the higher latitudes of the Northern Hemisphere that

act to destabilize the water column, leading to enhanced oceanic

convection in the North Atlantic (

SI Appendix, Fig. S10

) and a

spin-up of the AMOC. The strengthening of the AMOC as well



as the mechanisms involved are similar to those proposed for

tropical eruptions (9, 10): here, we show that the impact on the

AMOC is not limited to the first 10

–20 y and to tropical

eruptions as shown in previous studies (9

–11, 23), but can also

occur in response to high-latitude eruptions, lasting for 50 y

or more.


The changes in ocean circulation are also accompanied by a

decrease in the OHC. The eruption immediately cools the sur-

face (

SI Appendix, Figs. S2 and S8A



), after which the anoma-

lously cold surface water is transferred into the thermocline layer

and deeper in the ocean. Cold anomalies below

∼300 m are

established by year 15, and they persist throughout the re-

mainder of the simulation. In this regard, the evolution of the

global OHC associated with a high-latitude eruption is similar to

A

C



B

D

Fig. 2.



SST SD changes. Ensemble average change (ENS

v

minus ENS



nv

) in the SD of monthly mean SST (in degrees Celsius) for the period 5

–25 y (A), 26–45 y (B),

and 46


–60 y (C) after the eruption and for the entire time series (D). Changes that are significant at the 95% confidence level using an F test are shaded. The

contour interval is 0.03 °C (dashed, negative anomalies; solid, positive anomalies; the zero line is omitted). We discard the first 4 y to remove the hemispheric-

wide cooling due the eruption. The SD is calculated from the concatenated time series using all 10 members in each ensemble. Hence, 210 y of data are used

to calculate the SD in A: 10 members

× 21 y; 200 in B, 150 in C, and 560 y in D. As is commonly done when examining ENSO, we apply a 5-mo running mean on

the SST anomalies to damp high-frequency ocean variability unrelated to ENSO. The box shows the Nino3.4 area.

Fig. 3.

AMOC index and integrated OHC differences. (A) Long-term changes in the AMOC, as indicated by the change in the maximum of the overturning



stream function (in sverdrups). The shading shows approximate 95% confidence intervals (twice the SEM) of the difference in all pairs of experiments that

comprise the ensembles. The vertical lines bound the periods analyzed in Fig. 2. The mean AMOC strength in the ENS

v

is significantly greater (smaller) than



that in the ENS

nv

in the 5



–25 (26–45) y after the eruption. We apply a 5-y running mean to the AMOC time series as commonly done in the literature.

(B) Ensemble average change in OHC (in joules) averaged from the surface to selected depths for the global ocean. Solid lines denote the ensemble average

change, and shading represents the SD of the ensemble difference.

Pausata et al.

PNAS Early Edition

|

3 of 5



EARTH,

ATMOSPHERIC,

AND

PLANETARY



SCIENC

ES



that for tropical eruptions such as Tambora, Agung, and Pina-

tubo (9, 10).

Discussion and Conclusions

In summary, our results illuminate the mechanism by which large

summer high-latitude eruptions in the Northern Hemisphere

may trigger an El Niño-like anomaly

—relative to the no-volcano

case


—in the first 4–9 mo after the eruption and affect both

AMOC and ENSO variability for decades thereafter. Such

eruptions generate a hemispheric-scale surface cooling and thus

trigger, via energetic constraints (19, 20), a general southward

shift in the ITCZ that is particularly marked in the Pacific basin.

In turn, the southward-shifted ITCZ in the Pacific generates

anomalous surface westerlies over the equatorial western and

central Pacific and anomalous equatorial northerlies in the

eastern Pacific in the first 4

–9 mo following the eruptions (Fig.

1

B); these anomalies constitute an optimal trigger for an El



Niño-like perturbation (24). The processes leading to El Niño-

like anomalies in response to high-latitude eruptions are thus

very different from those hypothesized to act in response to

tropical eruptions (25, 26) and rely on better-understood

mechanisms (19, 20). Only a few modeling studies (27

–30) have

investigated the climate impacts of high-latitude volcanic erup-

tions, and none has looked at a potential influence on ENSO.

Oman et al. (29), using an atmospheric model coupled to a

mixed-layer ocean, found a weakening of the summer monsoon

circulation and precipitation over Africa and Asia in the summer

of the eruption, consistent with our findings. In our model,

Northern Hemispheric cooling also gives rise to a southward shift

in the Pacific ITCZ and subsequently to an El Niño-like anomaly

via a dynamical (Bjerknes) feedback, which is precluded in a

mixed-layer ocean model.

Our results also suggest that a large high-latitude eruption has

global-scale, long-lasting effects owing to changes in the OHC

and the AMOC, which in turn affect ENSO variability. Several

modeling and observation-based studies have found a causal link

between the AMOC strength and tropical Pacific climate (31

36) through large-scale atmospheric circulation teleconnections



associated with SST gradient changes in the tropical Atlantic (

SI

Appendix, Fig. S12



). In addition to this atmospheric bridge, a

readjustment of the global ocean circulation by oceanic waves

also transmits thermocline signals from the North Atlantic to the

tropical Pacific (37

–39). However, the timescales associated with

these teleconnections are very different: the atmospheric influence

can be transmitted from the tropical Atlantic into the tropical

Pacific in few weeks, whereas the oceanic teleconnections have a

timescale of a few decades (36

–38).


Studies do not agree on whether ENSO variance is positively

or negatively correlated to the AMOC strength. For example,

Dong and Sutton (31) and Timmerman et al. (36) examined the

response of five climate models to the imposition of freshwater

forcing (

“hosing”) of the North Atlantic Ocean and found a

significant increase in ENSO variability when the AMOC was

substantially weakened. On the other hand, Timmerman et al.

(39) and Atwood (35) show that, in two other models, ENSO

variance decreases in response to a hosing of the North Atlantic.

The positive correlation between AMOC and ENSO variance is

also supported by proxy reconstructions of the impact of the 8.2-ky

BP freshwater discharge into the North Atlantic, which shows

that the variance of ENSO was reduced for several decades after

the freshwater pulse (35). Physically, a stronger AMOC may

cause an increase in ENSO variability by shoaling and flattening

the Pacific thermocline along the equator (

SI Appendix, Fig.

S13

), which enhances the strength of the Bjerknes feedback (



SI

Appendix, Fig. S14

) (40).

The lack of robustness of modeled ENSO responses to



changes in AMOC is likely the result of the inability to correctly

simulate the climatology of the tropical Pacific atmosphere

–ocean

system, compromising the physics and feedbacks governing the



modeled ENSO (41). Analyses of the climate models used in the

past decade or so show that in most of them

—including in all

models (or very similar versions) examined by Timmermann

et al. (36)

—the spatiotemporal structure of ENSO and the key

feedbacks have large biases compared with those observed (42).

In contrast, the ENSO simulated by the climate model used here

compares favorably to observations [figure 13 in the study by

Bellenger et al. (42)] both in terms of mean state (amplitude,

spatial structure, frequency spectrum, and the seasonality) and

the strength of the feedbacks acting throughout a typical ENSO

cycle (the Bjerknes feedback, the heat flux, shortwave and latent

heat feedbacks). Our model

’s more realistic portrayal of key

features of ENSO

—compared with most climate models—may

be related to the fact that the double ITCZ bias over the tropical

Pacific

—ubiquitous in climate models—is less pronounced in



NorESM1-M (16, 17): the simulated ITCZ is more confined to

the Northern Hemisphere in NorESM1-M, as observed, rather

than being symmetric around the equator as in most of the models.

Our results highlight the potential for large high-latitude

eruptions to affect global climate through long-lasting changes in

ocean circulation and heat content beyond the lifetime of the

injected stratospheric aerosols. Our study also provides new in-

sights for a better understanding of volcanic impacts on ENSO

variability, which is of importance also in view of the potential

role played by the tropical Pacific in the global warming hiatus

(43

–47). More generally, our results suggest that multidecadal



changes in the AMOC

—owing to either natural internal vari-

ability or forcing (such as volcanic eruptions)

—may modulate

the statistics of ENSO for several decades into the future. Fur-

ther modeling studies, possibly at a community level (48) such as

those planned in the Volcano Model Intercomparison Project

(49), will be necessary to better assess the robustness and the

mechanisms behind the AMOC

–ENSO relationship, given the

very different AMOC sensitivity to external forcing shown by

climate models (14). The potential impact of AMOC modifica-

tions on tropical Pacific climate introduces additional challenges

in attributing future changes in ENSO variability to changes in

human activity.

Materials and Methods

Model Description and Experiment Design. We use the coupled atmospheric

ocean



–aerosol model NorESM1-M (16, 17) with horizontal resolution 1.9°

(latitude)

× 2.5° (longitude) and 26 vertical levels. The model includes

treatment of the direct effect of aerosols, and the first and second indirect

effects of aerosols on warm clouds. NorESM1 is an Earth System Model that

uses a modified version of CAM4, CAM4

–Oslo, for the atmospheric part of

the model, with an updated module that simulates the life cycle of sea salt,

mineral dust, particulate sulfate, black carbon, and primary and secondary

organics. CAM4

–Oslo is coupled to an updated version of the isopycnal

ocean model MICOM. A more detailed description is provided in

SI Appendix

.

The multistage high-latitude eruption is simulated by injecting, mostly in



the upper-troposphere/lower stratosphere, 100 Tg of SO

2

and dust over a



4-mo period. The eruption is comprised of eight injections, each lasting for

4 d (


SI Appendix, Table S1

). The simulated volcanic eruption starts from a

specific year selected from a transient 156-y historical (1850

–2005) simula-

tion. We generate the individual ensemble members by perturbing the ini-

tial conditions of the specific year in which the eruption is simulated;

perturbations are constructed by replacing the state of the atmosphere on

June 1st with that from days immediately preceding or following the

eruption. Twenty integrations are performed, each 4 y long. Ten of these

integrations are extended to 60 y; together, they constitute the volcanic

ensemble, ENS

v

. An equivalent ensemble is generated from a control run



that has volcanic aerosols set to background conditions (ENS

nv

): historical



aerosol emissions are taken from Intergovernmental Panel on Climate

Change AR5 datasets (50). The eruption year selected is the model year 1934

(eruption year: number 01), which is roughly in middle of the climatology

period, and it presents El Niño conditions as it was before the Laki eruption

(

SI Appendix



). A detailed examination of NorESM performance in interactively

4 of 5


|

www.pnas.org/cgi/doi/10.1073/pnas.1509153112

Pausata et al.



simulating the Laki eruption and a comparison with other modeling studies

is available in the study by Pausata et al. (18).

We analyze monthly mean model output. We assess the statistical sig-

nificance of differences in mean state and variability (at a stipulated 95%

significance level) using t and F tests.

Analyses.

ENSO. The ENSO index used in this study consists of monthly mean SST

anomalies spatially averaged over the Nino3.4 region (5°N to 5°S and 170°W

to 120°W). A 5-mo running mean is applied to damp uncoupled intra-

seasonal variations in SST. El Niño events are defined as the periods during

which the 5-mo running mean of the SST index anomaly is greater than

+0.4 °C for at least 6 consecutive mo. Changes in the ENSO variability are

measured as changes in the SST SD in the Nino3.4 area. The SD is calculated

from the concatenated time series using all 10 members in each ensemble.

The concatenation does not change the variance in ENS

v

and ENS



nv

, and only

slightly affects the threshold for statistical significance.

AMOC. The AMOC index is the maximum in the zonally averaged overturning

stream function in the North Atlantic between 30°N and 60°N and between

500- and 2,000-m depth. NorESM simulates a vigorous AMOC compared with

other models, being in the upper range of AMOC strengths simulated by

CMIP3 models (17). Measured by the maximum in the overturning stream

function in North Atlantic, the AMOC in the NorESM is about 30 Sv at 26.5°N,

whereas the observed AMOC is about 18

–20 Sv (1).

ACKNOWLEDGMENTS. We thank A. Hannachi, A. Grini, M. Gaetani, and

U. Ninnemann for discussions and suggestions, and J. Carton, A. Robock, and

two anonymous reviewers for insightful comments on the manuscript. The

simulations were performed on resources provided by the Swedish National

Infrastructure for Computing at the National Supercomputer Centre.

1. McGregor S, Timmermann A, Timm O (2010) A unified proxy for ENSO and PDO

variability since 1650. Clim Past 6(1):1

–17.

2. Brad Adams J, Mann ME, Ammann CM (2003) Proxy evidence for an El Niño-like re-



sponse to volcanic forcing. Nature 426(6964):274

–278.


3. Mann ME, Cane MA, Zebiak SE, Clement A (2005) Volcanic and solar forcing of the

tropical Pacific over the past 1000 years. J Clim 18(3):447

–456.

4. Ohba M, Shiogama H, Yokohata T, Watanabe M (2013) Impact of strong tropical



volcanic eruptions on ENSO simulated in a coupled GCM. J Clim 26:5169

–5182.


5. Maher N, McGregor S, England MH, Gupta AS (2015) Effects of volcanism on tropical

variability. Geophys Res Lett 42(14):6024

–6033.

6. McGregor S, Timmermann A (2011) The effect of explosive tropical volcanism on



ENSO. J Clim 24(8):2178

–2191.


7. Zanchettin D, et al. (2012) Bi-decadal variability excited in the coupled ocean

–atmo-


sphere system by strong tropical volcanic eruptions. Clim Dyn 39(1-2):419

–444.


8. Otterå OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for

Atlantic multidecadal variability. Nat Geosci 3(10):688

–694.

9. Swingedouw D, et al. (2015) Bidecadal North Atlantic ocean circulation variability



controlled by timing of volcanic eruptions. Nat Commun 6:6545.

10. Stenchikov G, et al. (2009) Volcanic signals in oceans. J Geophys Res 114(D16):D16104.

11. Mignot J, Khodri M, Frankignoul C, Servonnat J (2011) Volcanic impact on the Atlantic

Ocean over the last millennium. Clim Past 7(4):1439

–1455.

12. Zanchettin D, et al. (2013) Background conditions influence the decadal climate re-



sponse to strong volcanic eruptions. J Geophys Res Atmos 118(10):4090

–4106.


13. Gleckler PJ, et al. (2006) Volcanoes and climate: Krakatoa

’s signature persists in the

ocean. Nature 439(7077):675.

14. Ding Y, et al. (2014) Ocean response to volcanic eruptions in Coupled Model In-

tercomparison Project 5 (CMIP5) simulations. J Geophys Res Ocean 119(9):5622

–5637.


15. Gregory JM (2010) Long-term effect of volcanic forcing on ocean heat content.

Geophys Res Lett 37(22):L22701.

16. Bentsen M, et al. (2013) The Norwegian Earth System Model, NorESM1-M

—Part


1: Description and basic evaluation of the physical climate. Geosci Model Dev 6(3):

687


–720.

17. Iversen T, et al. (2013) The Norwegian Earth System Model, NorESM1-M

—Part

2: Climate response and scenario projections. Geosci Model Dev 6(2):389



–415.

18. Pausata FSR, Grini A, Caballero R, Hannachi A, Seland Ø (2015) High-latitude volcanic

eruptions in the Norwegian Earth System Model: The effect of different initial con-

ditions and of the ensemble size. Tellus B Chem Phys Meterol 67:26728.

19. Kang SM, Held IM, Frierson DMW, Zhao M (2008) The response of the ITCZ to ex-

tratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J Clim

21(14):3521

–3532.


20. Schneider T, Bischoff T, Haug GH (2014) Migrations and dynamics of the intertropical

convergence zone. Nature 513(7516):45

–53.

21. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon



Weather Rev 97(3):163

–172.


22. Cook E, Krusic P (2004) North American Drought Atlas (NOAA Paleoclimatology

Program, Boulder, CO).

23. Iwi AM, Hermanson L, Haines K, Sutton RT (2012) Mechanisms linking volcanic

aerosols to the Atlantic Meridional Overturning Circulation. J Clim 25(8):3039

–3051.

24. Chen Y-Q, Battisti DS, Palmer TN, Barsugli J, Sarachik ES (1997) A study of the pre-



dictability of tropical Pacific SST in a coupled atmosphere

–ocean model using singular

vector analysis: The role of the annual cycle and the ENSO cycle. Mon Weather Rev

125(5):831

–845.

25. Hirono M (1988) On the trigger of El Niño Southern Oscillation by the forcing of early



El Chichón volcanic aerosols. J Geophys Res 93(D5):5365.

26. Clement AC, Seager R, Cane MA, Zebiak SE (1996) An ocean dynamical thermostat.

J Clim 9(9):2190

–2196.


27. Highwood EJ, Stevenson DS (2003) Atmospheric impact of the 1783

–1784 Laki

Eruption: Part II. Climatic effect of sulphate aerosol. Atmos Chem Phys 3:1177

–1189.


28. Oman L, Robock A, Stenchikov GL, Schmidt GA, Ruedy R (2005) Climatic response to

high-latitude volcanic eruptions. J Geophys Res 110(D13):D13103.

29. Oman L, Robock A, Stenchikov GL, Thordarson T (2006) High-latitude eruptions cast

shadow over the African monsoon and the flow of the Nile. Geophys Res Lett 33(18):

L18711.

30. Kravitz B, Robock A (2011) Climate effects of high-latitude volcanic eruptions: Role of



the time of year. J Geophys Res 116(D1):D01105.

31. Dong B, Sutton RT (2007) Enhancement of ENSO variability by a weakened Atlantic

thermohaline circulation in a coupled GCM. J Clim 20(19):4920

–4939.


32. Dong B, Sutton RT, Scaife AA (2006) Multidecadal modulation of El Niño

–Southern

Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys Res

Lett 33(8):L08705.

33. Dong B-W, Sutton RT (2002) Adjustment of the coupled ocean-atmosphere system to

a sudden change in the thermohaline circulation. Geophys Res Lett 29(15):18-1

–18-4.

34. Zhang R, Delworth TL (2005) Simulated tropical response to a substantial weakening



of the Atlantic thermohaline circulation. J Clim 18(12):1853

–1860.


35. Atwood AR (2015) Mechanisms of tropical Pacific climate change during the Holo-

cene. PhD dissertation (University of Washington, Seattle).

36. Timmermann A, et al. (2007) The influence of a weakening of the Atlantic Meridional

Overturning Circulation on ENSO. J Clim 20(19):4899

–4919.

37. Goodman PJ (2001) Thermohaline adjustment and advection in an OGCM*. J Phys



Oceanogr 31(6):1477

–1497.


38. Cessi P (2004) Global seiching of thermocline waters between the Atlantic and the

Indian-Pacific Ocean Basins. Geophys Res Lett 31(4):L04302.

39. Timmermann A, An S-I, Krebs U, Goosse H (2005) ENSO suppression due to weakening

of the North Atlantic thermohaline circulation. J Clim 18(16):3122

–3139.

40. Russell AM, Gnanadesikan A (2014) Understanding multidecadal variability in ENSO



amplitude. J Clim 27(11):4037

–4051.


41. Neelin JD, et al. (1998) ENSO theory. J Geophys Res 103(C7):14261.

42. Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation

in climate models: From CMIP3 to CMIP5. Clim Dyn 42(7-8):1999

–2018.


43. England MH, et al. (2014) Recent intensification of wind-driven circulation in the

Pacific and the ongoing warming hiatus. Nat Clim Chang 4(3):222

–227.

44. Chen X, Tung K-K (2014) Climate. Varying planetary heat sink led to global-warming



slowdown and acceleration. Science 345(6199):897

–903.


45. Santer BD, et al. (2015) Observed multivariable signals of late 20th and early 21st

century volcanic activity. Geophys Res Lett 42(2):500

–509.

46. Santer BD, et al. (2014) Volcanic contribution to decadal changes in tropospheric



temperature. Nat Geosci 7(3):185

–189.


47. Maher N, Sen Gupta A, England MH (2014) Drivers of decadal hiatus periods in the

20th and 21st centuries. Geophys Res Lett 41(16):5978

–5986.

48. Pausata FSR (2015) How do high-latitude volcanic eruptions affect climate? Eos 96.



Available at https://eos.org/meeting-reports/how-do-high-latitude-volcanic-eruptions-

affect-climate. Accessed March 15, 2015.

49. World Climate Research Programme, VolMIP: Model Intercomparison Project on the

climate response to Volcanic forcing. Available at www.wcrp-climate.org/index.php/

modelling-wgcm-mip-catalogue/modelling-wgcm-mips/505-modelling-wgcm-volmip.

Accessed July 12, 2015.

50. Kirkevåg A, et al. (2013) Aerosol-climate interactions in the Norwegian Earth System

Model


—NorESM1-M. Geosci Model Dev 6:207–244.

Pausata et al.

PNAS Early Edition

|

5 of 5



EARTH,

ATMOSPHERIC,



AND

PLANETARY



SCIENC

ES

Yüklə 134,84 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə