Information Support System for Decision-making in Case of Emergencies Leading to Environmental Pollution: its Development and Implementation in the Research and Production Association Typhoon



Yüklə 81,68 Kb.

tarix01.02.2018
ölçüsü81,68 Kb.


 

Information Support System for Decision-making in Case of Emergencies Leading to 



Environmental Pollution: its Development and Implementation in the Research and 

Production Association Typhoon 

Authors: Vyacheslav Shershakov, Valeriy Kosyh 

Research and Production Association Typhoon, Roshydromet 

Translated by: Nataliya Vorobyova Joergensen 

 

Table of content 

1.

 



Introduction 

2.

 



History of creation and development of the response system to major accidents in 

RPA Typhoon  

3.

 

The activities of FEERC of Roshydromet, as a part of RPA Typhoon 



4.

 

Fukushima-1 nuclear power plant accident 



 

 

1.



 

Introduction 

At the present time many countries are paying a lot of attention to the creation and 

development of systems which could be potential providers of informational support to the 

decision making authorities in cases of emergencies which cause radioactive and chemical 

environmental pollution.  

Potentially hazardous sites are as a rule located close to larger cities. Therefore, an 

emergency situation on such sites is dangerous not only for the environment but also for the 

humans already at its early stage and. Consequently, being able to detect those instances at 

their initial stage and provide an operational prognosis of their development in order to 

predict the outcomes and mitigate the impact of the emergency consequences on the 

environment and people is an issue of a current concern.  

There exists a Russian Early Warning and Emergency Response System (REWERS), which 

has been working in the Russian Federation for many years using the joint forces and 



 

resources of many ministries, institutions and country regions. One of the agencies which 



participates in the activities of REWERS is Roshydromet, which task is to perform as a 

meteorological observer and forecasts-maker as well as to carry out radiation and chemical 

monitoring in the country. The monitoring is done by a network of observational stations, 

which mainly observe the environment, and radiometric and chemical laboratories, which 

provide the measurement data for environmental samples.  

Additionally, a number of research organisations are a part of Roshydromet and on 

top of their standard tasks they perform various environmental research projects, provide 

scientific and methodological guidance, as well as assist in further developments of the 

radiation and chemical monitoring networks. One of the top organisations representing this 

line of work is the Research and Production Association Typhoon, located in Obninsk, about 

100 km south-west form Moscow.  

Typhoon carries out the research and finds solutions for  a wide range of issues in the fields of 

hydrometeorology and monitoring of the environmental pollution:  

-

 

It studies the atmospheric boundary layer, troposphere, stratosphere, upper 



atmospheres and near-Earth space environment; tsunamis and various active 

influences on the meteorological and geophysical processes. 

-

 

It performs monitoring of the radioactive and  chemical environmental pollution (soil, 



air, surface water and seawater) by various substances of the anthropogenic origin, 

products of the physical-chemical conversions and migration of the pollutants in 

natural environments, makes forecasts of the influence (a forecast of the impact) of 

the pollution on the quality of the natural environment in Russian Arctic and in the 

North-Western part of the Russian Federation. 

-

 



It carries out an applied research- developmental and design-experimental tasks of 

hydrometeorological, heliogeophysical, oceanographical (sea hydrology), 

environmental pollution and hydro-meteorological instrument engineering nature.  

One of the main tasks assigned to Typhoon is to support operational analysis and 

forecasting services for the large-scale radioactive and chemical emergencies, occurring 

on the territory of the Russian Federation and its neighbouring states, which could 

constitute a potential threat to the natural environment and to Russian population.    

 



 

 



 

2.

 

Origin and Development of the Rapid Emergencies Response System in RPA 

Typhoon  

The famous Chernobyl accident in April 1986, which led to the contamination of large areas 

of the former Soviet Union and other European countries by radionuclides, gave an impulse 

to reinforce work in the direction of creation and development of a system able to analyse and 

forecast emergency accidents causing environmental pollution.  

For many years prior to the Chernobyl accident efforts has been made to create a 

mathematical model and develop a software for their implementation, which would be able to  

ensure the calculations  of different pollutants’ dissemination in various environmental 

components. Furthermore, during the whole period of the Chernobyl disaster, a task force has 

worked in Typhoon preparing the forecasts of the development of the disaster. On the basis of 

those prepared forecasts groups of dosimetricians were sent to the most dangerous zones in 

order to determine the rate of existing to public threat. The gained by the task force 

experience showed that in order to provide a rapid response to the large-scale emergencies it 

is necessary to have both a software and a hardware systems, which would be able to on an 

operational basis efficiently to collect, process, store and analyse the gathered data and to 

prepare a forecast of the development of an emergency, delivering this information in an 

easily accessible form to its final users afterwards.  Another words, there was a need to 

establish an information support system for the decision-making in case of emergencies, 

connected to the environmental pollution.   

The 80s and 90s of the last century saw rapid development of the personal computers and 

technologies which used them as a base. This made a qualitative leap in the way the 

information is presented for the wide range of customers. Bases on this type of technologies 



Typhoon started to build its new system. After Chernobyl, Typhoon began an active work on 

creation of technology, which is capable of immediately solving all the listed above tasks. 

The first serious check of the results of this work happened during a breakdown on the 

Siberian chemical plant in Tomsk, April 1993. The pollution forecast made by the specialists 

of the Association proved to be sensationally correct. 



 

After the Siberian chemical plant accident, the board of directors of Roshydromet has 



decided to create a single purposed technical unit within Typhoon, a so called Operational 

Centre which would be able to provide both operational and forecasting information about 

the state of emergencies on the territory of the Russian Federation and was to start work in 

July 1994. Later on, in July 1997 the Operational Centre was reorganised into the Federal 

Informational and Analytical Centre of Roshydromat, supporting emergency and forecasting 

data in cases of emergencies posing a threat to the environment.  The Center was entrusted 

with additional tasks related to the implementation of international commitments of the 

Russian Federation on forecasting the transboundary pollution transportations in case of 

nuclear power plants’ accidents. 

 

3.



 

Federal Informational and Analytical Centre of Roshydromat on board of 

Typhoon 

The Federal Informational and Analytical Centre of Roshydromat was founded in order to 

provide operational and forecasting information during environmental emergencies and to 

also to solve the following tasks:  

-

 

To collect, store, process and present data on the status of radiation and chemical 



environmental pollution on the territory of Russian Federation to the interested 

governmental agencies and institutions; 

-

 

To provide immediate analysis and forecasting of the radioactive and chemical 



environmental contaminations of air, surface waters and soil on the territory of 

Russian Federation in case of emergency or its threat;  

-

 

To prepare and present the analysis and prognosis of the state of the radioactive and 



chemical pollution , the weather conditions in the area of the accident and the 

assessment of possible transboundary transfers made on request from the Russian 

System of Prevention and Response to Emergency Situations at the federal level and 

ministries and governmental agencies of operational data.  

-

 

To ensure informational support to the decision-making public authorities on 



operational management and all their units during crisis situations with extremely 

high environmental pollution. 




 

In the cause of the years since the Centre’s establishment, a highly professional team of 



specialists was gathered, forming a successfully working team which still continues its work 

on system development. This system at the moment is called RECASS NT and is built on the 

modular approach, which allows easily increase its potential (performance capabilities). 

Functionally, it consists of several subsystems: 

-

 

Data processing for receiving, storing, processing and displaying on a map base data 



on hydrometeorological observations and results of monitoring of environmental 

pollution as well as a forecasted meteorological variables and  data of hydrological 

regime of  water bodies, demographic information, etc. 

-

 



Modeling of the transportation patterns of the 3V in the environment in order to be 

able to make calculations of the radioactive or chemical spread in the air or on surface 

waters. 

-

 



Assessment of pollutions impact and preparation of recommendations to be carried 

out as protective measures, the aim of which is to determine the danger level of 3V 

emission both for the environment and for humans.  

RECASS NT working principal is client (customer)-server. All the customers can cooperate 

(interact) as with the system of the local network, as well as remotely.  All the system 

calculations are done on servers, which the client (customer) related functions are performing 

the service of cooperation between customers and the system and the presentation of the 

results, also with the use of GIS- technologies. 

The Federal Informational and Analytical Centre of Roshydromat works 24/7 which 

guarantees immediate response in case of emergency situation which could lead to the 

environmental pollution. Over the years of the Centre’s existence, it got assigned a number of 

functions, connected with emergency responses together with making data and information 

available. As has been mentioned earlier, the Centre is one of Roshydromet’s organisations, 

which ensures data availability within the framework of the Russian System of Prevention 

and Response to emergency situations. As a part of agreement between the Russian Federal 

Atomic Energy Agency (Rosatom) and Roshydromet, the Centre exercises (fulfils) the 

function of the technical support centre within the system of the anti-damage response trust 

Rosenergoatom

The Centre also facilitates the analysis of the pollution situation of the natural 

environment during the nuclear tests, which is done within the framework of the agreement 



 

signed between Roshydromet and the Ministry of Defence of the Russian Federation. The 



Centre is also an authorized Russian organisation, which provides information (which is an 

information provider) within the Agreement of the Countries of the Northern and Baltic seas 

about the exchange of data on radioactivity monitoring.   

Finally, the Centre is one of the regional specialised centres of World Meteorological 

Organisation (WMO) which specialises in the area of ensuring of the production of the 

models of the atmospheric transport as a reaction to the environmental emergencies. It goes 

without saying that in order to be able to fulfil the above mentioned functions it is crucial to 

have precisely working tools and equipment, highly qualified specialists and a way to 

organise work and manage tasks. 

As we have mentioned earlier, the most of the software used in the Centre has been 

developed by its own specialists and combined into a unified system called RECASS NT to 

support decision-making. The system is able to prepare and transfer the forecast of the air , 

soil or water pollutions, as well as recommendations concerning the counter measures, which 

should be undertaken in order to protect urban areas in the coverage zone of emissions in any 

time of day and night, within 2 hours after receiving the information about the emergency 

situation. 

This system adds in tools for calculation of emergency radionuclides transport, which is 

based on three transporting models:  

-

 

a trajectory-based model, based on prediction of flows in the atmospheric layers at 



different heights; 

-

 



a model of global random diffusion, based on the calculations of random fluctuations 

of particles’ velocities and construction of the trajectories of  thousands of individual 

particles; 

-

 



mesoscale model of atmospheric diffusion based on the semiempirical solution of 

turbulent diffusion equation. 

Picture 1 shows an example of the calculations made in RECASS NT. High 

computerisation of the calculation process allow receiving result almost immediately and 

have constant automatic update of the operational data base, which includes the information 

from the monitoring networks of Roshydromat, local (object base) monitoring systems and 

also the meteorological forecast field.     



 

The Center’s performance is being improved during different international and 



national trainings. But the real test of the quality of its work happens while real emergencies 

causing environmental pollution take place or while cases which cause great public interest 

(event with high publicity, stir interest among the public). 

Particularly, the Centre was preparing forecasts for the Amur River, which was 

contaminated with nitrobenzene from the Chinese Songhua River at the end of 2005. The 

nitrobenzene was in the water due to an accident on one of the factories in China. The first 

quantitative data on the pollution of the Songhua River were presented by the Chinese side on 

25 November, 2005. The concentration of nitrobenzene in the river near the city of Harbin 

was found to be 0.59 mg / liter. This finding has caused great concern in Russia since the 

Songhua River flows into the Amur River, while its waters are being used (also as a source of 

drinking water) by a million inhabitants city - Khabarovsk. Two hours later FEERC prepared 

and delivered to Roshydromat its own pollution forecast of the water quality at the point 

where the river passes Khabarovsk. According to the forecast due to dilution with clean water 

the concentration of nitrobenzene in town vicinities was to be 0.077 mg / liter. Further 

measurements on 24 December, 2005, when the pollution peak was supposed to be passing 

Khabarovsk, showed only 35% less pollution than previously forecasted. This indicates the 

high quality level of the forecast. Preliminary, on 7 December the time of reach the front of 

pollution of the Khabarovsk was estimated, rightfully anticipated and successfully justified. 

Here is another example of the situation of a completely different nature. In the summer of 

2010 as a result of heat waves forests and peat bogs were burning in many regions of Russia. 

In August 2010 the media reported that due to fires on the territories of Bryansk region, 

previously contaminated by the Chernobyl accident, a radioactive cloud was formed and 

moving in the direction of Moscow. In the meantime Roshydromat’s territorial units in 

Bryansk and some other regions were carrying out selections of air samples and performing 

measurements in a quickened mode. The survey of the contaminated areas in the region was 

also conducted by an automotive radiological monitoring laboratory belonging to Typhoon

According to the measurements from the default observational network there has been no 

recorded cases of air pollution in July on the territories of Bryansk, Belgorod, Voronezh, 

Kursk, Lipetsk, Orel, Smolensk and Tula regions. Additionally, the automotive Laboratory 

carried out more than 15 different route surveys in Novyzybkovsky, Klintsovsky and 

Krasnogorsky areas of Bryansnoy region, which were believed to be mostly contaminated 

after the Chernobyl accident (Picture 2). The lab performed measurements of industrial 




 

radionuclides (Cs-137) taken from the contaminated surface areas as well as took air samples 



for the purpose of the subsequent laboratory analysis. Further evaluation of these results 

showed that fires had no effect on the radiation level in the south-western (most polluted) 

areas of the region.

 

All this work was done with one purpose - to bring to the public an 



objective and reasonable information concerning the deterioration of the radiological 

situation on contaminated areas after the Chernobyl accident, which has not happened.

 

 

4.



 

Fukushima-1 accident 

The full results of work on the development of RECASS NT system, as well as the 

(performance capabilities) possibilities of Typhoon in assuring rapid response to emergencies 

related to environmental pollution were in high demand during the accident at the nuclear 

plant at Fukushima. As you know the cause of the accident was the tsunami which arose as a 

result of strong earthquake near the Japanese coast March 11, 2011. 

The first calculations made by Typhoon’s experts were made on the evening of March 

11. In the absence of any information from the source, these estimates were made concerning 

the trajectory of air masses transfer (movement) from the area of the location of the plant. 

At 13:52 Moscow time Typhoon sent a note to the operational headquarters of Roshydromet

which contained the calculated trajectories of air masses dissemination at the following 

altitudes: 500m, 1.5 km and 3 km. On the basis of these calculations it has been concluded 

that the accident had no consequences or risks connected with radiation releases within the 

first day of the accident for the territories of the Russian Federation. This allowed time to 

deploy necessary counter measures in case of possible negative consequences in the days to 

follow. 


On March 12 the radiation monitoring network of Roshydromet in the Far East 

(Picture 3) was set into the rapid measurement modes which allowed obtaining dose rate 

measurement within an interval of 1 hour and perform daily measurements of air samples for 

the detection of artificial radionuclides originating from the nuclear power plant. All the 

results of these measurements were immediately transferred to Typhoon via data 

communication network of Roshydromet. 

Considering that during the first days of the incident it was difficult to predict its 

further development, on March 13-14, Typhoon’s specialists made a number of calculations 




 

of the so-called “conservative” or worst-case scenarios after the accidents. Pictures 4 and 5 



show one of them. In those calculations the assumption was that the fuel from two reactors 

would be in a short period of time (1 hour) released into the atmosphere, and the weather 

conditions would be such that the emission transfer would happen in the direction of the 

Russian Federation.  

On March 19, Typhoon’s automotive laboratory of radiation detection was sent to 

Yuzhno - Sakhalinsk, where for more than 3 months it was conducting a dosimetric survey of 

the Sakhalin Island’s area, and performing the measurements of air samples to determine 

concentrations of radionuclides in it (Picture 6). 

Throughout the accident period at Fukushima plant, Roshydromet specialists routinely 

performed calculations and made assessments of transboundary emissions transfer in from 

the plant (Figure 7). On the basis of this information, the specialists were constructing the 

routes for aircrafts to collect air samples on the request of Ministry of the Russian Federation 

for Civil Defence, Emergency Management and Natural Disasters Response.  

All information was promptly sent to the customers (to the Ministry of the Russian 

Federation for Civil Defence, Emergency Management and Natural Disasters Response , 

Rosgidromet, Rosatom, etc.) in accordance with the current regulations.  

As a part of the cooperation with International Atomic Energy Agency and World 

Meteorological Institute, the Center of Roshydromet performed different types of calculations 

to estimate the effects of the Fukushima plant accidents (Picture 8) as requested by both 

organisations.  

It is possible to continue listing the tasks and activities made as the consequences of 

the accident. Yet summarising the results it is possible to say that the operating system at the 

Center, its software, technical possibilities and the existing organisation of work are able to 

prepare operational data and deliver it to clients. Naturally, during assessments of the 

performance following the Fukushima accident, a number of process bottlenecks were 

detected in the way the actions are being carried out. Obviously all these areas will require 

improvement. 

 

 




10 

 

5.



 

Conclusions  

RPA Typhoon continues working on, developing, improving and upgrading their information 

support system for the decision-makers in cases of emergency situations, which could lead to 

environmental contaminations.  

The need of this work is determined by the new continuously emerging issues. Effects 

of fires in 2010 led to the need of development a system for issuing operational forecast 

distribution of combustion products. These studies are underway in Typhoon

The eruption of the volcano Eyyafyatlayokudl in 2010 was a starting point and a push 

to begin organizing in Russia one of the consulting centers of volcanic ash (VAAC), with the 

participation of several organizations. Herewith the calculations for the forecast of ashes 

distribution will be carried out in Typhoon and already from the next year. 

We acknowledge that life itself defines the ways of further development. 

Unfortunately, they all arise from the problems which we are confronted with and which 

come from nature and as from the humans who transforms it. But we see our ultimate goal in 

both protecting the humans and preserving the natural environment. 

Bibliography

1.

 



S.M. Vakulovski,  V.M. Shershakov et al. Analysis and Prognosis of Radiation 

Exposure Following the Accident at the Siberian Chemical Combine Tomsk-7. Risoe-

R-750(EN). Risoe National Laboratory, Roskilde, Denmark, October 1994. 

 



11 

 

Picture 1: An example of the representation of the culsulated results in RECASS NT system 



 

Picture 2. An example of the dosimetric survey routing in the Bryansk region 

(August 2010) 



12 

 

 



 

Picture 3: Radiation monitoring network points of Roshydromet, performing 

radiological measurements in the quickened mode during the accident at the Fukushima 

plant  



13 

 

Picture 4: a “conservative” estimate of effective dose (10 days) 



 (Level of intervention: 50 m³v) 

0.5 мЗв


 


14 

 

Picture 5: a “conservative” estimate of the doses influence of thyroid (children 1-2 years old) 



 (Level of intervention: 100 m³v) 

20 мЗв


 


15 

 

 



Sampling of radioactive aerosols 

using the air-filtering plants 

Sampling of radioactive fallouts using 

horizontal plates 



Изменение объемной активности радионуклидов на 

Дальнем Востоке

0

50



100

150


22.3

26.3


30.3

3.4


7.4

11.4


15.4

19.4


23.4

27.4


Дата

10

-5

Бк



3

Владивосток I-131

Влад.Cs-137

Влад.Cs-134

Южно-сахалинск Cs-137

Южно-Сахалинск Cs-134

Южно-Сахалинск I-131

Благовеще

нск

 

Хабаровск



 

Южно


-Сахали

нск


 

Садгород


 

Южно


-Курил

ьск


 

Озер


ная

 

Сосно



вка

 

Начики



 

Мильк


ов

 

Петропавло



вск

-Камчат

ский


 

Усть


-Хай

рузово


 

Усть


-Камчатск

ий

 



Оссора

 

Корф



 

Picture 6. Work of mobile laboratory radiation survey in Yuzhno-Sakhalinsk 




16 

 

 



Picture 7: Example of evaluation of transboundary transport from Fukushima-1 


17 

 

 



 

Picture 8: Calculation of depositions I-131 (Bq/m²) from 15 to 30 March 2011  



(area 5000 km) (according to the source, provided by IAEA) 



Dostları ilə paylaş:


Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2017
rəhbərliyinə müraciət

    Ana səhifə