Microsoft Word goedel-duzi rtf



Yüklə 246,82 Kb.
Pdf görüntüsü
səhifə7/11
tarix01.08.2018
ölçüsü246,82 Kb.
#60063
1   2   3   4   5   6   7   8   9   10   11

 

13

The FOPL proof calculus  (with the logical axioms and rules described in the previous 



chapter) is a complete calculus: it proves all the logically valid formulas of FOPL. The 

calculus can be viewed as a theory without special axioms. This empty theory  is  not a 



complete theory: for instance, a simple formula like 

x  P(x) is not decidable. Thus the 

calculus does not decide even simple arithmetic truths, for generally they are not logical 

truths. It might seem that the calculus decides at least all the logical truths, since they are 

provable. We will show as a consequence of Gödel’s first incompleteness theorem that the 

problem of logical truth is also not decidable within FOPL. 

To characterize arithmetic truths, we need some special axioms formulated in the 

arithmetic language. As an example we adduce a theory Q, called Robinson’s arithmetic

given by the following seven axioms:  

x   

(Sx 

≠ 0) 


xy  

(Sx = Sy 

→ x = y

x   

(x + 0 = x

xy  

(x + Sy = S(x + y)) 

x  

(* 0 = 0) 

xy  

(x* Sy = (x* y) + x

xy  

(

≤ y = ∃z (z + x = y) ) 

The theory Q characterizes basic arithmetic operations (a successor of any number is not 

equal to zero; adding zero to any number gives as a result the same number, etc.), and the 

structure 

is a model of the theory; Q is however a weak theory. General simple statements 

like commutativity of adding or multiplying, i.e., sentences 

xy  (x+y = y+x) and  

x(x * y = y * x) cannot be proved in Q.  

The theory Q proves only syntactically simple sentences. Syntactical complexity of a 

sentence is determined by a number of alternating quantifiers. More precisely: We say that an 

arithmetic formula 

ϕ is formed from a formula ψ by a bounded quantification, if ϕ has one of 

the following forms (the binary predicate symbol ‘<’ is being interpreted as the “less than” 

relation, i.e., y abbreviates (x 

≤ y) & ¬(x=y) ): 

v (x → ψ), ∃v (v < x & ψ), ∀v (≤ x → ψ), ∃v (v ≤ x & ψ), 

where v, x are distinct variables. Quantifiers of the above form are called bounded quantifiers. 

A formula 

ϕ is a bounded formula if it contains only bounded quantifiers. A formula ϕ is a 

Σ

-

formula, if 

ϕ is formed from bounded formulas using only conjunction, disjunction, 

existential quantifier and any bounded quantifiers.  

There is an interesting, rather non-trivial fact valid of Robinson’s arithmetic: Q is 

Σ

-

complete; it proves all the 

Σ-sentences that should be provable, i.e., the Σ-sentences true in 



N

:

 



if 

σ is a Σ-sentence such that 



N

 |= 


σ, then Q |– σ.  

If we extend the theory Q by the scheme of induction axioms

[

ϕ(0) & ∀(ϕ(x) → ϕ(Sx))] → ∀ϕ(x), 



we obtain the theory PA called Peano arithmetic. Note that we added a scheme of infinitely 

many  axioms which can be obtained by substituting a formula for 

ϕ. Yet this theory is 

“reasonable”, it conforms to finitism: we added a “geometrical pattern” of formulas. Thus in 

PA we have a finite number of structural relations in which the formulas stand to each other, 

and proving in the theory does not involve a procedure that would make reference to actual 

infinity. 




 

14

The structure 



N

 is a standard model of PA. Each number 

∈ N is denoted by a term of 

the arithmetic language, namely the term SS…S0 (the n

th

 successor of the constant 0), called 



the n

th

–numeral. We use an abbreviated notation: n.  

Peano arithmetic is rather a strong theory and many laws of arithmetic are provable in it; 

however, it is not a complete theory: there is a sentence 

ϕ that is true in 

N

 but not provable in 

PA. And, of course, 

¬ϕ is not provable as well, because ¬ϕ is not true in 



N

 and PA proves 

only sentences true in its models

.

 You might attempt at adding some more “geometrical 

patterns of formulas” as axioms, so that to complete the theory. Providing a finite number of 

such ‘structural relations’ (i.e. axioms or axiom schemas) could be found, Hilbert’s goal 

would be completed. Unfortunately it is not possible. Incompleteness is not a special feature 

of Peano arithmetic: any “reasonable” theory of arithmetic is incomplete. Though there is a 



naïve  complete theory of arithmetic (called true arithmetic), it cannot meet the finitistic 

demands on involving only such procedures that make no reference either to an infinite 

number of structural properties of formulas or to an infinite number of operations on 

formulas. To state these results more precisely, we have to define what is meant by a 

reasonable theory:  

A theory T is recursively axiomatized if there is an algorithm

17

 that for any formula 



ϕ decides 

whether 


ϕ is an axiom of the theory or not. 

We also need a notion of arithmetic soundness: A theory T is arithmetically sound, if all 

arithmetic sentences provable in T are valid in 

N



Gödel’s first theorem on incompleteness: let T be a theory that contains Q (i.e., the language 

of T contains the language of arithmetic and T proves all the axioms of Q). Let T be 

recursively axiomatized and arithmetically sound. Then T is an incomplete theory, i.e., there 

is a sentence 

ϕ that is not decidable in T: T proves neither ϕ nor ¬ϕ. 



Note: Actually, Gödel proved the theorem on the assumption of the theory being omega-

consistent. Omega-consistency is a technical concept which applies to a theory T if, for no 

property P, (i) T proves the general proposition that there exists some natural number with the 

property P, but (ii) for every specific natural number n, T proves that n does not have the 

property P. This is mostly of technical interest, since all true formal theories of arithmetic, 

i.e., theories the axioms of which are true in 

N

, are omega-consistent. Note that omega-

consistency implies consistency, but not vice versa. Later J. Barkley Rosser strengthened the 

theorem and proved that the assumption on T being arithmetically sound (or 



N

 being a model 

of T) could be weakened by the assumption on consistency of T.  

It should be clear now what Gödel proved: it is not possible to find a recursively 

axiomatized consistent theory, in which all the true arithmetic sentences about natural 

numbers could be proved. Feasibility of a theory certainly involves the ability to recognize 

whether a formula is an axiom or not, i.e., the axioms of the theory have to be recursively 

defined; otherwise we could not execute the proof. Hence, completeness of arithmetic and 

recursive axiomatization are two distinct goals which cannot be met both together. 

In what follows we just outline the main ideas of the proof. First we have to introduce 

Gödel’s method of arithmetization of metamathematics. Well-formed formulas are sequences 

of symbols, proofs are sequences of formulas, and the set of these sequences is countable. 

Hence it is possible to define an unambiguous numbering  of all the formulas and proofs 

(expressed in the language of a recursively defined theory T). Gödel defined a one-to-one 

                                                 

17

 We use the notion of algorithm in an intuitive way here: a finite procedure that for any input formula 



ϕ gives a 

“Yes / No” output in a finite number of steps. Due to Church’s thesis it can be explicated by any  computational 



model, e.g., Turing machine.  


Yüklə 246,82 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10   11




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə