Microsoft Word goedel-duzi rtf



Yüklə 246,82 Kb.
Pdf görüntüsü
səhifə4/11
tarix01.08.2018
ölçüsü246,82 Kb.
#60063
1   2   3   4   5   6   7   8   9   10   11

 

7

connectives (



¬, &, ∨,  →, etc.), quantifiers (∀,  ∃) and = (identity) are not interpreted, they 

have the fixed standard meaning

10

.   


Some formulas are true under every interpretation for any valuation of variables, i.e., they 

are valid in any interpretation structure. They are called logically valid formulas (also logical 



truths or logical laws)For instance, the formula [

x P(x) ∨ ∀Q(x)] → ∀x [P(x) ∨ Q(x)] is a 

logical truth. Indeed, if the antecedent [

x P(x) ∨ ∀Q(x)] of the implication is true under 

some interpretation over a universe U, then either the realization P

U

 of the symbol ‘P’ is equal 



to U or the realization Q

U

 of ‘Q’ is equal to U, or both. Which means that the set-theoretical 



union of the sets P

U

 and Q



U

 is equal to U (P

U

 

∪ Q



U

 = U), and the consequent 

x [P(x) ∨ Q(x)] 

is true under this interpretation as well. According to the definition of implication the whole 

formula is true; it cannot be false under any interpretation.  

Summarizing: By 





|

=  ϕ[e] we denote the fact that a formula ϕ is satisfied by the 

structure 

M

 and a valuation e. In other words, the formula 



ϕ is true under the interpretation 

over 


M

, for the valuation e. If 

ϕ is true under 

for all valuations (of variables by elements 



of the universe), then 

M

 is a model of 



ϕ, or ϕ is valid in 

M

; in symbols 





|

= ϕ. Formula ϕ is 



logically valid (logical truth), if 

ϕ is true under every interpretation, denoted |= ϕ.  



2.2. Hilbert’s program 

Before introducing Gödel’s results I have to briefly describe the atmosphere in which they 

appeared. Paradoxes and conceptual problems of mathematics often stem from the infinite. 

This includes, for example, Zeno’s paradoxes in Greek times, infinitesimals in the 

seventeenth century, and the paradoxes of set theory in the late nineteenth and early twentieth 

centuries. In any case, the problem appeared when mathematicians began to reason with 

infinite quantities. 

The German mathematician David Hilbert (1862-1943) announced his program in the 

early 1920s. It calls for a formalization of all of mathematics in axiomatic form, and of 

proving the consistency of such formal axiom systems.   The consistency proof itself was to 

be carried out using only what Hilbert called “finitary” methods. The special epistemological 

character of finitary reasoning then yields the required justification of classical mathematics. 

Although Hilbert proposed his program in this form only in 1921, it can be traced back until 

around 1900, when he first pointed out the necessity of giving a direct consistency proof of 

analysis. Hilbert first thought that the problem had essentially been solved by Russell’s type 

theory in Principia. Nevertheless, other fundamental problems of axiomatics remained 

unsolved, including the problem of the “decidability of every mathematical question”, which 

also traces back to Hilbert’s 1900 address.  

Within the next few years, however, Hilbert came to reject Russell’s logicistic solution to 

the consistency problem for arithmetic. In three talks in Hamburg in the summer of 1921 

Hilbert presented his own proposal for a solution to the problem of the foundation of 

mathematics. This proposal incorporated Hilbert’s ideas from 1904 regarding direct 

consistency proofs, his conception of axiomatic systems, and also the technical developments 

in the axiomatization of mathematics in the work of Russell as well as the further 

developments carried out by him and his collaborators. What was new was the finitary way in 

which Hilbert wanted to carry out his consistency project.  

He accepted Kant’s finitist view in the sense that we obviously cannot experience 

infinitely many events or move about infinitely far in space. However, there is no upper 

bound on the number of steps we execute. No matter how many steps we may have executed, 

                                                 

10

 For details and precise definitions see, e.g., Mendelson (1997) 




 

8

we can always move a step further. But at any point we will have acquired only a finite 



amount of experience and have taken only a finite number of steps. Thus, for a Kantian like 

Hilbert, the only legitimate infinity is a potential infinity, not the actual infinity. The Kantian 

element of Hilbert’s view is what separates his formalism from earlier, implausible accounts. 

Hilbert’s problem, as he saw it, lies in how infinite mathematics can be incorporated into the 

finite Kantian framework. Hilbert would say that finitist mathematical truths, intimately 

bound up with our perception, could be known a priori, with complete certainty. If we were 

content with finitist mathematics, this would be the end of the story. But Hilbert wanted more 

than this, and rightly so. He wanted to keep the extraordinary beauty, power and utility of 

classical mathematics, but he also wanted to do it in such a way that we could be fully 

confident that no more paradoxes would arise. This includes transfinite set theory, about 

which he declared: “No one shall drive us out of the paradise that Cantor has created for us”.

11

 



What Hilbert needs to do is to show that various parts of infinite mathematics will fit with 

one another and finite mathematics in such a way that no inconsistency could be derived. But 

what is involved in deriving things, in mathematical reasoning? Hilbert fixes on the symbols 

themselves. Here is the core of formalism: mathematics is about symbols. Hilbert’s Kantian 

idea is now to study these symbols mathematically, not using the questionable infinity, but 

rather finite meaningful mathematics intimately linked to concrete symbols of classical 

mathematics itself. Hilbert was convinced that mathematical thinking could be captured by 

the syntactic laws of pure symbol manipulation

12

.  


Work on the program progressed significantly in the 1920s and many outstanding 

logicians and mathematicians took part in it, such as Paul Bernays, Wilhelm Ackermann, John 

von Neumann, Jacques Herbrand and, of course, Kurt Gödel. 

2.3. Completeness of the proof calculus    

The idea of finitist axiomatisation is simple: if we choose some basic formulas (axioms) 

that are decidedly true and if we use a finite method of applying some simple rules of 

inference that preserve truth, no falsehood can be derived from these axioms; hence no 

contradiction can be derived, no paradox can arise.  

Logically valid formulas that are true under each interpretation are the most indisputably 

true formulas. Let us consider some logically valid formulas: 

(1)


 

ϕ → (ψ → ϕ) 

(2)

 

(



ϕ → (ψ → ξ)) → ((ϕ → ψ) → (ϕ → ξ))  

(3)


 

(

¬ϕ → ¬ψ) → (ψ → ϕ) 



(4)

 

ϕ(x) → ϕ(c)   (where 



is a constant or a suitable variable, 

ϕ(c

  

 

 



 

  

  arises from 



ϕ(x) by correct substituting for x

(5)


 

x (ϕ → ψ(x)) → (ϕ → ∀x ψ(x))       (variable does not occur free in the formula ϕ) 

We can easily see that (1)–(5) are logically valid. For instance, (1) says that if 

ϕ is true 

then it is implied by any 

ψ, which is true due to the definition of mathematical notion of 

implication. The exact verification is however out of scope of the present article.  

                                                 

11

 Brown (1999),  Hilbert (1926, p.170): “Aus dem Paradies, daß Cantor uns geschaffen, soll uns niemand 



vertreiben können“. 

12

 In advance we can state at this point that Gödel’s Incompleteness results showed that this belief in the power 



of symbol manipulation was not realistic. Actually, Gödel’s results delimitate the possibilities of mechanical 

symbol manipulation.  




Yüklə 246,82 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10   11




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə