Synthese (2012) 188: 487-498 doi 10. 1007/s11229-011-9940-6 Prior on an insolubilium of Jean Buridan



Yüklə 308,96 Kb.
Pdf görüntüsü
tarix25.07.2018
ölçüsü308,96 Kb.
#58734


Synthese (2012) 188:487–498

DOI 10.1007/s11229-011-9940-6



Prior on an insolubilium of Jean Buridan

Sara L. Uckelman

Received: 13 April 2011 / Accepted: 13 April 2011 / Published online: 17 May 2011

© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract

We present Prior’s discussion of a puzzle about valditity found in the

writings of the fourteenth-century French logician Jean Buridan and show how Prior’s

study of this puzzle may have provided the conceptual inspiration for his development

of hybrid logic.

Keywords

Arthur Prior

· Hybrid logic · Insolubilia · Jean Buridan

Introduction

Elsewhere in this volume, we give a historical overview of Arthur Prior’s work on

medieval logic, focusing on the unpublished material in his archives. In this paper we

take a more conceptual approach towards showing his debt to the medieval logicians.

In

Uckelman


(

2011


) we saw how the works of the Stoic logician Diodoros Chronos

and medieval logicians such as Jean Buridan and Peter de Rivo provided inspiration for

Prior’s development of temporal logic. In this paper we show that an insolubilium (puz-

zle) of Jean Buridan may also have provided the original inspiration for hybrid logic.



2 A insolubilium about validity

2.1 Medieval conceptions of validity

Jean Buridan was a French logician working at the University of Paris in the early

fourteenth century.

1

Buridan, like many medieval logicians, defined ‘proposition’ in a



1

For further discussion of Buridan’s works and Prior’s research on Buridan, see

Uckelman 2011

.

S. L. Uckelman (



B

)

Institute for Logic, Language, and Computation, Amsterdam, The Netherlands



e-mail: S.L.Uckelman@uva.nl

123



488

Synthese (2012) 188:487–498

fashion antithetical to the standard modern definition. By the term propositio, Buridan

meant not an abstract entity, always existing and eternally true or eternally false, but

rather a specific mental, spoken, or written token declarative sentence. On such a view,

propositions are transient objects, which come into and go out of existence and are

not necessarily sharable.

2

Such a view naturally has consequences for how validity is to be defined. According



to standard modern definitions of validity, an argument is valid if whenever proposi-

tions expressed by the premises are true, the propositions expressed by the conclusion

must be true, or that the truth of the premises forces the truth of the conclusion. Since

truth or falsity, and hence possible truth and possible falsity, can only be ascribed

to things which exist, this definition builds in the assumption that the propositions

expressed by the premises and the conclusion always exist. On the medieval concep-

tion of propositions that we’re considering now, validity can no longer be defined

as a relationship between necessarily existing and unchanging entities, because truth

values do not attach to necessarily existing abstract objects but instead attach to con-

tingently existing transient concrete tokens. In order for a proposition to be true, it

must first exist. However, we can easily imagine circumstances in which true premises

are written down, but where the conclusion is not written down (or otherwise spoken

or thought), making the premises true and the conclusion not true. So, the modern

definition of validity is obviously not suitable.

Medieval definitions of validity are also couched in terms of necessity and truth

and a certain relation between the truth of the premises and the truth of the conclu-

sion holding in some necessary fashion.

3

However, these definitions when combined



with the contingent nature of propositions on the medieval view give rise to some

paradoxical results. Two of these paradoxes, or insolubilia, Prior investigated in detail

in (

1969


). In this paper, we present the results of his research, and show a natural

extension of these results to basic hybrid logic. We conclude that, though there is no

explicit textual evidence for this, Prior’s attempt to provide a semantics for Buridan’s

distinction between ‘possible’ and ‘possibly-true’ may have provided a conceptual

grounding and inspiration for his development of hybrid logic.

We make one note on terminology before turning to the details of Prior’s research

on Buridan. Because the modern conception of propositions is so strongly entrenched,

and because the medieval view of propositions presented above is so foreign and anti-

thetical to the modern view, we attempt to lessen any confusion which might arise

because of the differences of these views by calling token propositions by their Latin

name, propositio (pl. propositiones). Throughout the following we use propositio to

refer to a specific spoken, mental, or written token, and we use the English word

‘proposition’ in its modern sense.

4

2



For more details on ancient and medieval theories of the proposition, see

Nuchelmans

(

1973


).

3

Broadie



(

1993


, pp. 88–90) presents three definitions of validity which are discussed in medieval literature,

each of which have different problems connected with the fact that the validity relation must hold between

contingent entities.

4

Note, however, that this convention is not followed in the texts that we are quoting. We trust that context



will make it clear which sense is being used.

123



Synthese (2012) 188:487–498

489


2.2 The insolubilium

Prior (


1969

) considers an insolubilium or sophism of Buridan’s. An insoluble is a

“proposition arrived at by apparently valid forms of reasoning, which nonetheless

implies its own contradictory” (

Buridan 1966

, p. 5). The standard presentation of an

insoluble in a medieval logical text is to first state the insoluble, then give an argument

for its truth, and another argument for its falsity, and then an argument for the correct-

ness of one of these arguments and the incorrectness of the other. The specific insoluble

discussed by Prior is the first one of the eighth chapter of Buridan’s Sophismata:

SOPHISM. (1) Every proposition is affirmative, so none is negative.

It is proved, first, by the argument from contraries, for just as it follows that if

every man is ill, then no man is healthy, because it is impossible for the same

person to be both healthy and ill, so it follows in the proposed [case] that it is

impossible for the same proposition to be both affirmative and negative at once.

The opposite is argued, because from a possible proposition there does not fol-



low an impossible. And yet the first proposition is possible, namely, “Every

proposition is affirmative.” For God could destroy all negatives, leaving affirma-

tives. Thus, every proposition would be affirmative. But the other is impossible,

namely, “None is negative”, for in no case could it be true. For whenever it is

not, it is neither true nor false, and whenever it is, then some [proposition] is

negative, namely, it. Hence, it is false to say that none is negative (

Buridan 1966

,

pp. 180–181).



Both arguments are intuitively plausible. The first one turns on an equivalence repre-

sentable in modern notation as

x(Px → Ax) ≡ ¬∃(Px ∧ ¬Ax)

This is just the interdefinability of the quantifiers.

The second argument is more interesting because it turns on properties specific to

Buridan’s propositiones. The propositio “No propositio is negative” can never be true,

because in order to be true, it must first exist (i.e., be thought, written, or spoken),

and as it is itself negative, as soon as it exists, it contradicts itself. (A bit later on in

Ch. VIII, Buridan follows this line of effect in considering the argument from “No

propositio is negative” to its contradictory “Some propositio is negative”.)

Buridan accepts the argument in favor of the inference, and rejects the argument

against it. He concludes that if one allows there to be premises which are possible

even though they are never true, then we are not dealing with a case of an impossible

conclusion following from a possible one. He says that

it is manifest that a proposition is not called possible because it can be true, nor

impossible because it cannot be true (

Buridan 1966

, p. 182).

5

5



The diametric opposition of this view to Diodoros’s, discussed in

Uckelman


(

2011


), will hopefully have

struck the reader forcefully.

123



490

Synthese (2012) 188:487–498

This conclusion leads him to make a distinction between sentences which are possi-

ble and those which are possibly-true. It is this distinction which Prior formalizes in

(

1969



).

When Prior discusses the inference from “No propositio is negative” to “Some



propositio is negative”, he notes that such examples may appear to be evincing “some

sort of confusion between use and mention, or between object-language and metalan-

guage” (

Prior 1969

, p. 481). The thought is that there is merely some fundamental

confusion going on and that somewhere Buridan is doing something illicit. Prior goes

on to note that this is not the case, and that “there is nothing against a language

containing its own syntax, though there may be plenty against its containing its own

semantics” (

Prior 1969

, p. 481). Indeed, we have examples of languages containing

their own syntax, namely, Peano arithmetic, which is expressive enough to express

syntactical notions such as ‘proof’, ‘provable’, etc. To show that there is no problem

with a language containing its own syntax, and that the move which Buridan is making

by having truth attach to individual tokens of sentences is not illicit, Prior constructs

a language containing some of its own syntax, where the object-language and the

meta-language are sharply distinguished. He uses this to give a semi-formalization of

the paradox, and we now present this semi-formalization.



3 Prior’s semi-formalization

In this section we present a slightly modified version of the semi-formalization which

Prior used to analyze Buridan’s insoluble. We have two languages, an object language

L and a metalanguage M. Our metalanguage M is standard English. We define L

syntactically.

L is composed of three types of strings of marks: terms, signs of quantity,

and copulae.

Definition 3.1 The terms of

L are the strings



propositio

affirmativa

negativa

We shall, as needed, use capital Roman letters, A

BC,…, as variables for these

terms.


Definition 3.2 The signs of quantity of

L are the strings



omnis

quaedam

nulla

Definition 3.3 The copulae of

L are the strings



est

non est

123



Synthese (2012) 188:487–498

491


Definition 3.4 A string of characters is a sentence of

L or an L-sentence

6

if and only



if it is a sign of quantity followed by a term followed by a copulae (which can be

non est only if the sign of quantity is quaedam) followed by another (not necessarily

distinct) term.

Thus, all

L-sentences will be of one of the following four forms:

• omnis A est B

• nulla A est B

• quaedam A est B

• quaedam A non est B

Strictly speaking, these strings are syntactic entities which, as yet, have no mean-

ing. However, the choice for

L-strings of these particular standard Latin terms was

meant to be transparent. When we give the truth conditions for these

L-sentences,

their meanings will correspond to the meanings of the Latin sentences.

Before we can present the truth definitions for

L-sentences, we need to introduce a

notion which will allow the distinctive nature of Buridan’s propositiones as concrete,

existing objects to be reflected. To do so, we assume we have at our disposal an unlim-

ited number of sheets of paper. On these sheets, certain

L-sentences may be written.

These inscriptions on sheets of paper are our tokens. We will define two types of truth

with respect to tokens on a sheet of paper: a sentence may be true on a sheet of paper

and a sentence may be true of a sheet of a paper. In order to define these two types

of truth, we must first define what each of the

L-terms refers to, or, in Prior’s words,

connotes. Prior says:

Each term is associated with a particular group of shapes, which it may be said

to connote, though this means no more than that the presence on a sheet of marks

of certain shapes will determine…whether or not sentences containing certain

terms are to be counted as “true on their sheets” (

Prior 1969

, p. 483).

Definition 3.5 The connotation of a term is defined as follows:

• The term propositio connotes all L-sentences.

• The term negativa connotes all L-sentences whose sign of quantity is nulla or

whose copula is non est.

• The term affirmativa connotes all L-sentences which are not connoted by the term

negativa.

We often say that a sentence is of type rather than that it is connoted by term A.

We now give the truth conditions for true on a sheet for each type of sentence.

Definition 3.6 (Truth on a sheet)

• A sentence of the form Omnis A est B is true on a sheet iff

1. It is written on the sheet.

2. There is at least one sentence on the sheet which is of type A.

3. There is no sentence on the sheet which is of type which is not of type B.

6

When clear, we will drop ‘



L’ and refer to these strings simply as ‘sentences’.

123



492

Synthese (2012) 188:487–498

• A sentence of the form Nulla A est B is true on a sheet iff

1. It is written on the sheet.

2. There is no sentence on the sheet which is of both type and type B.

• A sentence of the form Quaedam A est B is true on a sheet iff

1. It is written on the sheet.

2. There is at least one sentence on the sheet which is of both type and type B.

• A sentence of the form Quaedem A non est B is true on a sheet iff

1. It is written on the sheet, and either

2. There is at least one sentence on the sheet which is of type and is not of type

B, or

3. There is no sentence on the sheet of type A.

7

Before we turn to examples of this definition, we make a few notes on the relationships



between the four types of sentences. These four types of sentences are the four found

in the traditional Aristotelian Square of Opposition. The truth definition given above

satisfies the standard relationships in this square, particularly that sentences of the

form Omnis A est B and Quaedam A non est B are contradictories of each other and

sentences of the form Nulla A est B and Quaedam A est B are also contradictories of

each other. Hence, if both of a pair of contradictories occur on a sheet, then one will

be false on the sheet and the other will be true on the sheet.

8

We now give examples of this truth definition.



-

On Sheet 1, both sentences are false: They are both false because there are no negative



propositiones on the sheet.

7

Note that in this definition, one of the conditions of a sentence of the form Omnis A est B being true is



that at least one sentence of form both and occurs on the sheet. Since Quaedam A non est B is the

contradictory of Omnis A est B, when it is present on a sheet, its truth can be triggered merely by there

being no sentences of type A. This phenomenon, ‘existential import’, is another widely-discussed difference

between medieval and modern logical theories, but one which will not occupy us here.

8

The proofs of these claims are straightforward and are not proved here.



123


Synthese (2012) 188:487–498

493


On Sheet 2, the first sentence is false and the second is true. The second is true

because the first propositio is affirmative and the first is false because the second

violates the truth conditions of the first.

And on Sheet 3, both sentences are true. The first is true by the connotations of

the terms; the affirmative sentences are defined as those which are not negative. The

second is true because neither sentence is affirmative.

It is now clear how we can use

L-sentences to make claims about the syntax of other

L-sentences, in a completely unproblematic manner which involves no confusion of

metalanguage and object language. Because we can do so, we can make a distinction

between sentences which are possible and those which are possibly true.

First, note that this language contains some sentences such, that any time they

are present on a sheet, they are true on that sheet, and some sentences such that any

time they are present on a sheet, they are false on that sheet. Consider the following

sentences:

Nulla affirmativa est negativa

Quaedam affirmativa est negativa

The first says that no affirmative sentence is negative. Given the connotations of affir-



mativa and negativa, the first sentence is clearly tautological, and the second sentence,

being its contradictory, will equally clearly be false on any sheet on which it appears.

This is nothing surprising, as we expect any standard logical system to contain tautol-

ogies and contradictions. But contrast these two sentences with the following:



Quaedam propositio est affirmativa

Quaedam propositio non est affirmativa

Nulla propositio est negativa

The first two will be true on any sheet on which they occur, and the last will be false on

any sheet on which it occurs. But these cases differ relevantly from the first two. Con-

sider the first sentence and its contradictory, Nulla propositio est affirmativa. While

the first is true on any sheet it is written on, its contradictory is not false on every sheet

it is written on. For example, if it is the only sentence written on a sheet, then it is true

on that sheet.

If we move into the metalanguage, we can see another difference between the two

groups of statements. We cannot imagine any sheet of paper which has a sentence

which is both negative and affirmative. The sentence Quaedam affirmativa est nega-



tiva is a logical contradiction, because as a sentence is affirmative if and only if it is

not negative, this is simply the assertion

x(N x ∧ ¬N x)

likewise, its contradictory is the logical necessity

x(N x → N x)

123



494

Synthese (2012) 188:487–498

But we can easily imagine a sheet of paper which is correctly described by “No prop-

osition is negative” (to adapt a reason of Buridan’s given later in the same text, God

could easily have annihilated all negative propositions, so that the meta-claim “No

proposition is negative” would be true), and ones where “Some proposition is affir-

mative” is an incorrect description. As Buridan points out, there is nothing logically

contradictory about the claim

¬∃x N x, nor anything logically necessary about the

claims


x Ax and ∃x¬Ax.

Sentences of these types are the ones which underpin Buridan’s conclusion that

there are some sentences which are possible, but not possibly-true, and some which

are impossible but not necessarily-false.



4 A hybrid logic approach

The presentation in the previous section corresponds, with a few changes of notation,

to Prior’s original consideration of the sophisma. However, his discussion of the dif-

ference between ‘possible’ and ‘possibly-true’ is done in an informal, metalanguage

setting. It is possible to give a natural and straightforward extension of the previous

semantics to a hybrid semantics in order to give a formal presentation of the distinction

in the object language, which we do now.

We begin by extending

L to a new syntax L . L contains all the terms, signs of quan-

tity, and copulae of

L, plus an infinite set of numerals N and the modalities @

n

, ♦, ♦·, ,

and

. We call elements of



nominals, and let the variables nm, , k…range over

the nominals.



Definition 4.1 A string of characters is a propositio of

L (or an L -propositio) iff it

is a sentence of

L.

9



We correspondingly modify def.

3.5


so that propositio connotes

all


L -propositiones.

Definition 4.2 A string of characters is a sentence of

L (or an L -sentence) iff it is

one of the following:

• It is an L -propositio.

• It is @

n

followed by an

L -propositio.

• It is ♦ followed by an L -propositio.

• It is ♦· followed by an L -propositio.

• It is followed by an L -propositio.

• It is followed by an L -propositio.

A model


S is formally defined as a tuple SV, where is a (possibly infinite)

set of sheets s

1

s



2

s

3

…, is a function assigning



L -propositiones to subsets of S,

and is a function from

N to such that N(n) = s

n

. We abuse notation and say

that V

(s



n

) is the set of propositiones which are written on s



n

. We define two notions

of truth. The first applies to propositiones only, and is a simplification of the truth

definition presented in the previous section.

9

As before, we will omit the



L when ambiguity will not occur.

123



Synthese (2012) 188:487–498

495


Definition 4.3 (Truth of a sheet)

• A propositio of the form Omnis A est B is true of a sheet s



n

iff


1. There is at least one propositio on s

n

of type A.

2. There is no propositio on s

n

which is of type which is not of type B.

• A propositio of the form Nulla A est B is true of a sheet s

n

iff


1. There is no propositio on s

n

which is of both type and type B.

• A propositio of the form Quaedam A est B is true of a sheet s

n

iff


1. There is at least one propositio on s

n

which is of both type and type B.

• A propositio of the form Quaedem A non est B is true of a sheet s

n

iff


1. Either there is at least one propositio on s

n

which is of type and is not of

type B,

2. Or there is no propositio on s



n

of type A.

Let

ϕ be an arbitrary propositio. We then say that s



n

ϕ iff ϕ is true of s



n

.

With this definition of truth of a sheet, we can give a complete truth definition for



arbitrary

L formulas. Let ϕ be an arbitrary L -propositio.



Definition 4.4 (Truth)

• s



n

@

m

ϕ iff ϕ ∈ (s

n

) and s



m

ϕ

• s



n

ϕ iff s



n

@

n

ϕ

The addition of the @



n

operator allows us to distinguish between possibility and possi-

ble truth. Formally, possibility and possible truth, like truth, are evaluated with respect

to a sheet of paper:



Definition 4.5 (Possibility & Possible Truth)

• s



n

♦ϕ iff ϕ ∈ (s



n

) and there exists an s.t. s



n

@

m

ϕ

• s



n

♦·ϕ iff ϕ ∈ (s



n

) and there exists an s.t. s



m

@

m

ϕ

• s



n

ϕ iff ϕ ∈ (s



n

) and for all ms



n

@

m

ϕ

• s



n

ϕ iff ϕ ∈ (s



n

) and for all m, ϕ ∈ (s



m

) implies s



m

ϕ

Like



L-sentences above, strings like ♦ϕ are strictly speaking syntactic entities which

have no meaning. However, it should be intuitively clear that the truth conditions for

these four operators will allow us to treat them as object-language renderings of stan-

dard meta-language notions, and read

♦ϕ as ‘ϕ is possible’; ♦·ϕ as ‘ϕ is possibly-true’;

ϕ as ‘ϕ is necessary’; and ϕ as ‘ϕ is necessarily-true’. We can then conclude that

ϕ is possible but not possibly-true if ∀ms.t. s

m

@

n

ϕ, n, and there are mn

s.t. s



m

@

n

ϕ, as well as the following:

Lemma 4.6

(a) s



n

ϕ implies s



n

♦·ϕ implies s



n

♦ϕ, and not vice versa.

(b) s

n

ϕ implies s



n

ϕ implies s



n

ϕ, and not vice versa.



Proof

(a) Assume s



n

ϕ. This means that s



n

@

n

ϕ, that is, ϕ ∈ (s

n

) and s



n

ϕ.

Hence there exists s.t. s



m

@

m

ϕ, namely n. So s

n

♦·ϕ. Further there exists



s.t. s

n

@

m

ϕ, namely again. So s

n

♦ϕ.


For the reverse direction, consider the following model: Let

ϕ = Nulla propositio



est negativa.

ϕ ∈ (s

4

), and s



5

ϕ. Hence, there exists s

4

@

5



ϕ, so s

4

♦ϕ.



123


496

Synthese (2012) 188:487–498

However, s

4

♦·ϕ because neither s



4

@

4



ϕ nor s

5

@



5

ϕ. Let ψ = Omnis



propositio est affirmativas

5

@



5

ψ, and ψ ∈ (s

4

), so s



4

♦·ψ. However,



s

4

ψ, since s



4

ψ.

(b) Let



ϕ be arbitrary and assume s

n

ϕ. Then ϕ ∈ (s



n

) and for every ms



n

@

m

ϕ. Suppose s

n

ϕ. Then either ϕ ∈ (s



n

) or there is an m, ϕ ∈ (s



m

)

but s



m

ϕ. The first disjunct results in an immediate contradiction. So, fix m.

Then s

n

@

m

ϕ. But then s

m

ϕ, which is also a contradiction. That s



n

ϕ is


obvious from the preceding.

For the reverse direction, let

ψ be as above. Since ψ ∈ (s

5

) and s



5

ψ, s

5

ψ.

However, s



5

@

4



ψ, so s

5

ψ. To show that s



n

ϕ doesn’t imply s



n

,

consider the following model:



Let

ϕ =Omnis propositio est affirmativa. Then s

7

ϕ, and ϕ ∈ (s



7

). Since


ϕ ∈ (s

6

), s



7

ϕ. However, s

6

ϕ, so s



7

@

6



ϕ. Hence, s

7

ϕ.



Throughout his paper, Prior is scrupulous about keeping meta-language notions such

as truth and possibility strictly within the meta-theory and outside of his syntax, so that

123



Synthese (2012) 188:487–498

497


one could not make semantic claims such as “Every propositio is possible” or “Some

negative is not true” within the object language. With the introduction of the possibil-

ity operators into the syntax, there is a natural worry that we have somehow violated

this strict division, and introduced something illicit and potentially problematic into

our logic. This is not the case, because in

L we distinguish between propositiones

and sentences. Propositiones can refer to themselves; they cannot refer to sentences,

and sentences do not refer to propositiones. In this fashion, we are able to provide a

higher layer of formalization extending the formalization originally presented by Prior

without introducing any of the problematic issues he wished to avoid.

This hybridization of the system presented in

Prior


(

1969


) as a way to model

Buridan’s distinction is eminently natural, which makes it noteworthy that there is no

evidence in his paper that Prior ever considered such a development himself. Prior

was translating and reading Buridan, and writing this paper and another on similar

sophisms, at the same time that he was exploring the four grades of tense logical

involvement which led to his hybridization of tense logic.

10

Given how natural it is



extend the notion of sentences on sheets to propositions in possible worlds, and to

formalize how propositiones can make claims about propositiones on other sheets by

means of sheet-indices and operators on these indices, it is plausible that Prior’s work

with medieval discussions of medieval problems provided some inspiration for his

later development of hybrid logic.

Regardless of what the actual relationship between Prior’s work with Buridan and

his development of hybrid logic, the hybridization of Prior’s framework is interesting

not only as a model of a perhaps antiquated medieval theory, but also in its own right.

At the end of his paper, Prior notes that

Part of the interest of these results is that relations between the truth, falsehood,

possible-truth, necessary-truth, possibility and necessity of sentences on sheets

may be thought of as “mirroring” certain relations between features of what is

or is not the case in the world…If there can be a somewhat more sophisticated

semantics than some of the stock ones, there can also be a more sophisticated

modal logic (

Prior 1969

, pp. 491–492).

Hybridization of the sheets-of-paper models is one natural next step towards this

more sophisticated semantics.

11

10



See

Prior


(

1968


) and

Blackburn

(

2006


).

11

Hybrid logic is not the only semantics that can make this distinction. An alternative semantics, called



double-index semantics, which could be used to model this phenomenon was developed and published a few

years after Prior’s introduction of hybridization; Creswell says that “[double-indexing] seems to have been

first investigated by Frank Vach in his UCLA Ph.D., but the first published use is by

Kamp


(

1971


). It was later

used in


Åqvist

(

1973



) and

Segerberg

(

1973


), who called it two-dimensional modal logic” (

Cresswell 1985

,

p. 154). [The references are



Kamp

(

1971



),

Åqvist


(

1973


), and

Segerberg

(

1973


).] However, given Prior’s

close connection with hybrid logic and lack Of evidence that he was familiar with the double-indexing or

two-dimensional approach, we feel that the hybrid semantics is more natural for extending his account of

Buridan’s sophisma. My thanks to the anonymous referee for pointing me towards these references.

123



498

Synthese (2012) 188:487–498



Acknowledgments

The author wishes to thank Peter Øhrstrøm for the invitation to write this paper, and

Benedikt Löwe for encouraging investigation of this topic. The author was partially funded by the project

“Dialogical Foundations of Semantics” (DiFoS) in the ESF EuroCoRes programme LogICCC (LogICCC-

FP004; DN 231-80-002; CN 2008/08314/GW).

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncom-

mercial License which permits any noncommercial use, distribution, and reproduction in any medium,

provided the original author(s) and source are credited.



References

Åqvist, L. (1973). “Modal logic with subjunctive conditionals and dispositional predicates”, Journal of



philosophical logic, 2(1), 1–76.

Blackburn, P. (2006). Arthur Prior and hybrid logic. Synthese, 150(3), 329–372.

Broadie, A. (1993). Introduction to medieval logic, (2nd edn.). Oxford: Clarendon Press.

Buridan, J. (1966). Sophisms on meaning and truth (T.K. Scott, Trans.) New York: Appleton-Century-

Crofts

Cresswell, M. J. (1985). Structural meanings: The semantics of propositional attitudes. Cambridge,



MA: MIT Press.

Kamp, H. (1971). Formal properties of ‘now’. Theoria, 37, 227–273.

Nuchelmans, G. (1973). Theories of the proposition: Ancient and medieval conceptions of the bearers

of truth and falsity. Amsterdam: North-Holland Publishing Co.

Prior, A. N. (1968). Papers on time and tense. Oxford: Clarendon Press.

Prior, A. N. (1969). The possibly-true and the possible. Mind, 78(312), 481–492.

Segerberg, K. (1973). Two-dimensional modal logic. Journal of Philosophical Logic, 2, 77–96.

Uckelman, S. L. (2011). Arthur Prior and medieval logic. Synthese. doi:

10.1007/s11229-011-9943-3



.

123

Document Outline


Yüklə 308,96 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə