Trust Management for the World Wide Web



Yüklə 0,79 Mb.
səhifə2/13
tarix26.09.2018
ölçüsü0,79 Mb.
#70469
1   2   3   4   5   6   7   8   9   ...   13

1Introduction


Many activities of growing importance in the "information infrastructure," including electronic commerce and mobile programming, depend critically on precise and reliable ways to manage trust. Users will need to know how trustworthy information is before they act on it. For example, they will need to know where the information comes from (authentication), what kind of information it is (content), what it can do (capability), and whether it was altered during transmission (integrity). Without knowledge of what or whom to trust, users may treat a piece of potentially valuable information as yet another stream of random bits. Worse yet, malicious parties may lure users into believing that a false piece of information is trustworthy.

Many existing mechanisms and protocols address specific aspects of trust in the information infrastructure, but none provides a complete solution. For example, digital signatures allow publishers to create and distribute non-refutable proofs of authorship of documents. Public key infrastructures bind public keys to entities so that users can establish trust chains from digital signatures to signers. Metadata formats allow creators of information resources or trusted third parties to make assertions about these resources. Users can query and process the trusted assertions before deciding what to do with the information resources. Each of these mechanisms and protocols defines a subset of all potential trust problems and solves or partially solves this subset.

The goal of my research is to design a complete trust management infrastructure, in which trust is specified, disseminated, and evaluated in parallel with the information infrastructure. I have identified four major components of a trust management infrastructure: the metadata format, the trust protocol, the trust policy language, and the execution environment, which are defined in Chapter two. Under this framework of study, I discovered that most existing approaches to trust deal with metadata formats and trust protocols but lacked general trust policy languages for specifying user preferences and generic environments for evaluating them. This finding leads to my interest and involvement in REFEREE.

REFEREE is a result of collaboration among researchers from AT&T and W3C, including myself. It was designed to be a general-purpose execution environment for all Web applications requiring trust. REFEREE evaluates user policies in response to a host application's request for actions. Policies are treated as programs in REFEREE. For a given request, REFEREE invokes the appropriate user policy and interpreter module and returns to the host application an answer (with justification) to the question of whether or not the request complies with the policy.

The underlying architecture of REFEREE allows different trust policy languages and trust protocols to co-exist in one execution environment. They are treated as add-on software modules and can be installed or de-installed modularly. At the time of development, we were unable to find a suitable policy language to demonstrate all the features of REFEREE, and so we designed the Profiles-0.92 language.

In order to develop a deeper understanding of REFEREE and to demonstrate its feasibility, power, and efficiency, I built a reference implementation of the REFEREE trust management system. The implementation includes a set of the core REFEREE data types and methods, a PICS protocol, and a Profiles-0.92 policy interpreter to evaluate polices based on the PICS metadata format. In addition, I implemented another policy language called PicsRULZ and integrated it into the reference implementation, in order to demonstrate REFEREE's ability to handle multiple policy languages in particular and multiple software modules generally.

This thesis is about the work I have done on trust management during the last year. Chapter two introduces readers to the term trust management infrastructure and explains how existing systems and protocols map into my framework of infrastructure. Chapter two also identifies trust management problems that are common to several current Web applications.

Chapter three is devoted to the REFEREE execution environment. It explains in detail its requirements, architectural design, primitive data types, and standard methods of bootstrapping and querying.

Chapter four describes two different policy languages, PicsRULZ and Profiles-0.92. They represent two different approaches to writing user policies. The chapter also provides four sample policies of varying degrees of complexity and typicality. These policies are expressed in both PicsRULZ and Profiles-0.92, so that I can compare and contrast the strengths and weaknesses of the two languages.

Chapter five describes my implementation work on REFEREE and analyzes the system from the implementation perspective. I chose Jigsaw proxy as the host application and Java Virtual Machine as the underlying REFEREE execution environment. The work sheds light on how to use REFEREE in a real-world application.

Chapter six concludes my thesis.

2Trust Management


The term trust management has received a great deal of attention in the network security community since it was first introduced in the paper "Decentralized Trust Management" by Blaze, Feigenbaum, and Lacy [BFL96]. Many existing systems have since been identified as trust management systems in the sense of [BFL96], including PolicyMaker [BFL96], SDSI [RL96], SPKI [EFRT97], and X.509 [CCITT88a, CCITT88b]. People have compared and contrasted these systems and their capabilities and limitations.

This chapter reviews the concept of "trust management" as the starting point for my thesis work. Later discussions of REFEREE in Chapter three and PicsRULZ and Profiles-0.92 in Chapter four address specific components of "trust management".

Section one introduces the trust management problem in the [BFL96]. Section two presents my alternative notion of trust management infrastructure. Section three analyzes several well-known systems in the "trust management infrastructure" framework and highlights their strengths and weaknesses. Section four sets the context of my thesis work by identifying several common Web applications that have similar trust management needs.


Yüklə 0,79 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   ...   13




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə