A naphto[2,1-b]furan as a new fluorescent label


Table 4. Logarithm of association constants (log Kass) for the interaction of (bi)thienyl amino acids 2b



Yüklə 311,47 Kb.
səhifə3/3
tarix22.05.2018
ölçüsü311,47 Kb.
#45622
1   2   3



Table 4. Logarithm of association constants (log Kass) for the interaction of (bi)thienyl amino acids 2b-f,h-j with several cations in acetonitrile (ligand:metal stoichiometry 2:1).


Cation
Cpd

Cu2+

Fe3+

Hg2+

Pd2+

2b

7.232 ± 0.006

7.233 ± 0.007

---

7.247 ± 0.005

2c

12.29 ± 0.31

11.33 ± 0.29

---

11.09 ± 0.07

2d

11.24 ± 0.23

11.35 ± 0.24

---

11.07 ± 0.08

2e

12.54 ± 0.04

13.38 ± 0.05

---

12.15 ± 0.06

2f

12.80 ± 0.07

12.00 ± 0.06

---

---

2h

11.42 ± 0.20

11.40 ± 0.19

11.07 ± 0.08

11.11 ± 0.05

2i

13.33 ± 0.10

13.80 ± 0.15

11.97 ± 0.07

12.20 ± 0.07

2j

13.21 ± 0.05

13.32 ± 0.05

---

12.79 ± 0.06



Conclusions

New heterocyclic amino acids 2 containing thiophene and bithiophene units as side chain were synthesised and evaluated as fluorescent chemosensors based on an amino acid core for a series of biomedically relevant ions. From the spectrofluorimetric titrations in acetonitrile, it was found that the (bi)thienyl amino acids were more sensitive towards Fe3+ and Cu2+, when compared to the other tested ions, as a very low number of metal equivalents was enough to obtain a complete fluorescence quenching. The results indicated that there is a strong interaction with Fe3+ and Cu2+ through the donor N, O and S atoms at the side chain of the various amino acids and they can act as fluorimetric chemosensors. Interestingly, the methoxybithienyl amino acid 2i was found to be a very sensitive and selective colorimetric chemosensor for Cu2+ as it displayed a marked colour change from pale yellow to pink.

Due to their emissive properties and their recognition ability, these heterocyclic amino acids could find application as fluorescent building blocks for the preparation of peptides with chemosensory ability. Further studies will be undertaken in order to clarify aspects which are important for the pratical biomedical application of the synthesized compounds, such as the behaviour of these probes in the complex mixture of compounds in biological systems and their performance in the presence of ions and probes at physiological concentrations.
Acknowledgments

Thanks are due to Fundação para a Ciência e Tecnologia (FCT-Portugal) and FEDER-COMPETE for financial support through Centro de Química [PEst-C/QUI/UI0686/2013 (F-COMP-01-0124-FEDER-037302)] and a PhD grant to C.I.C. Esteves (SFRH/BD/68360/2010). The NMR spectrometer Bruker Avance III 400 is part of the National NMR Network and was purchased with funds from FCT and FEDER.



References

Batista R M F, Ferreira R C M, Raposo M M M, Costa S P G (2012) Novel optical chemosensors for anions and cations based on an amino acid core functionalised with benzimidazoles. Tetrahedron 68:7322-7330.



Capobianco M L, Barbarella G, Manetto A (2012) Oligothiophenes as fluorescent markers for biological applications. Molecules 17:910-933.

Castro V I B, Carvalho C M, Fernandes R D V, Pereira-Lima S M M A, Castanheira E M S, Costa S P G (2016) Peptaibolin analogues by incorporation of α,α-dialkylglycines: synthesis and study of their membrane permeating ability. Tetrahedron 72:1024-1030.



Cheruku P, Huang J-H, Yen H-J, Iyer R S, Rector K D, Martinez J S, Wang H-L (2015) Tyrosine-derived stimuli responsive, fluorescent amino acids. Chem. Sci. 6:1150-1158.

Costa S P G, Maia H L S, Pereira-Lima S M M A (2003) An improved approach for the synthesis of α,α-dialkyl glycine derivatives by the Ugi-Passerini reaction. Org. Biomol. Chem. 1:1475–1479.

Costa SPG, Oliveira E, Lodeiro C, Raposo MMM (2007) Synthesis, characterization and metal ion detection of novel fluoroiono-phores based on heterocyclic substituted alanines. Sensors 7:2096–2114.

Costa SPG, Oliveira E, Lodeiro C, Raposo MMM (2008a) Heteroaromatic alanine derivatives bearing (oligo)thiophene units: synthe-sis and photophysical properties. Tetrahedron Lett 49:5258–5261.

Costa SPG, Batista RMF, Raposo MMM (2008b) Synthesis and photophysical characterization of new fluorescent bis-amino acids bearing a heterocyclic bridge containing benzoxazole and thiophene. Tetrahedron 64:9733–9737.

Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106:17–89.

Esteves C I C, Silva A M F, Raposo M M M, Costa S P G (2009) Unnatural benz-X-azolyl asparagine derivatives as novel fluorescent amino acids: synthesis and photophysical characterization. Tetrahedron 65:9373–9377.

Esteves C I C, Raposo M M M, Costa S P G (2010) Synthesis and evaluation of benzothiazolyl and benzimidazolyl asparagines as amino acid based selective fluorimetric chemosensors for Cu2+. Tetrahedron 66:7479-7486.

Esteves C I C, Raposo M M M, Costa S P G (2011) Novel highly emissive non-proteinogenic amino acids: synthesis of 1,3,4-thiadiazolyl asparagines and evaluation as fluorimetric chemosensors for biologically relevant transition metal cations. Amino Acids 40:1065-1075.

Esteves C I C, Batista R M F, Costa S P G, Raposo M M M (2016) Novel functionalised imidazo-benzocrown ethers bearing a thiophene spacer as fluorimetric chemosensors for metal ion detection. Dyes Pigments, 135:134-142.

Hennig A, Florea M, Roth D, Enderle T, Nau W M (2007) Design of peptide substrates for nanosecond time-resolved fluorescence assays of proteases: 2,3-Diazabicyclo[2.2.2]oct-2-ene as a noninvasive fluorophore. Anal. Biochem. 360:255-265.

Kajihara D, Abe R, Iijima I, Komiyama C, Sissido M, Hohsaka T (2006) FRET analysis of protein conformational change through position-specific incorporation of fluorescent amino acids. Nature Methods 3:923-929.

Katritzki A R, Narindoshvili T (2009) Fluorescent amino acids: advances in protein-extrinsic fluorophores. Org. Biomol. Chem. 7:627-624.

Lee S, Xie J, Chen X (2010) Peptide-based probes for targeted molecular imaging. Biochemistry 49:1364–1376.

Liu Q, Wang J, Boyd B J (2015) Peptide-based biosensors. Talanta 136:114–127.

Moragues M E, Martínez-Máñez R, Sancenón F (2011) Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chem. Soc. Rev., 40:2593-2643.

Morris JV, Mahaney MA, Huber JR (1976) Fluorescence quantum yield determinations. 9,10-Diphenylanthracene as a reference standard in different solvents. J Phys Chem 80:969–974.

Niu W, Guo J (2013) Expanding the chemistry of fluorescent protein biosensors through genetic incorporation of unnatural amino acids. Mol BioSyst 9:2961-2970.

Oliveira E, Genovese D, Juris R, Zaccheroni N, Capelo JL, Raposo MMM, Costa SPG, Prodi L, Lodeiro C (2011) Bioinspired systems for metal-ion sensing: new emissive peptide probes based on benzo[d]oxazole derivatives and their gold and silica nanoparticles. Inorg. Chem. 50:8834–8849.

Pina J J, de Melo S S, Batista R M F, Costa S P G, Raposo M M M (2010) Synthesis and Characterization of the Ground and Excited States of Tripodal-like Oligothienyl-imidazoles. J. Phys. Chem. B, 114:4964-4972.

Pless S A, Ahern C A (2013) Unnatural amino acids as probes of ligand-receptor interactions and their conformational consequences. Annu Rev Pharmacol Toxicol 53:211–29.

Santos-Figueroa L E, Moragues M E, Climent E, Agostini A, Martínez-Máñez R, Sancenón F (2013) Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010–2011. Chem. Soc. Rev. 42:3489-3613.

Shimazaki Y, Takani M, Yamauchi O (2009) Metal complexes of amino acids and amino acid side chain groups. Structure and properties. Dalton Trans 38:7854–7869.

Veale E B, Gunnlaugsson T (2010) Fluorescent sensors for ions based on organic structures. Annu. Rep. Prog. Chem. B Org. Chem. 106:376-406.

Wang A, Nairn N W, Marelli M, Grabstein K (2012) Protein engineering with non-natural amino acids. In: Kaumaya P. (ed) Protein Engineering, InTech, Rijeka, pp 253-290.

Zheng Y, Cao X, Orbulescu J, Konka V, Andreopoulos F M, Pham S M, Leblanc R M (2003) Peptidyl Fluorescent Chemosensors for the Detection of Divalent Copper. Anal. Chem. 75:1706-1712.



Zhou L, Shao J, Li Q, van Heel A J, de Vries M P, Broos J, Kuipers O P (2016) Incorporation of tryptophan analogues into the lantibiotic nisin. Amino Acids 48:1309–1318.

Supplementary material


1. Synthetic details and characterization for compounds 2b-g,i-j
N-Cyclohexyl-2-(N-(4’’-methoxybenzyl)acetamido)-2-(5-phenylthiophen-2-yl)acetamide 2b. Starting from 2-(4’-formylphenyl)thiophene 1b (0.132 g, 7.03 × 10-4 mol), 4-methoxybenzylamine (0.09 mL, 7.03 × 10-4 mol), acetic acid (0.04 mL, 7.03 × 10-4 mol) and cyclohexyl isocyanide (0.09 mL, 7.03 × 10-4 mol), compound 2b was obtained as an orange oil (0.201 g, 4.22 × 10-4 mol, 60%). 1H NMR (400 MHz, CDCl3): = 1.10-1.19 (m, 3H, 3 × H-cHex), 1.28-1.38 (m, 2H, 2 × H-cHex), 1.56-1.69 (m, 3H, 3 × H-cHex), 1.83-1.92 (m, 2H, 2 × H-cHex), 2.11 (s, 3H, CH3CO), 3.75 (s, 4H, OCH3 and H1-cHex), 4.63 (d, J 8.0Hz, 2H, NCH2), 5.89 (s, 1H, -H), 6.01 (d, J 7.6 Hz, 1H, NH), 6.79 (d, J 8.8 Hz, 2H, H3’’ and H5’’), 7.02 (d, J 3.6 Hz, 1H, H3), 7.08 (d, J 8.6 Hz, 2H, H2’’ and H6’’), 7.11 (d, J 3.6 Hz, 1H, H4), 7.29 (d, J 7.2 Hz, 1H, H4’), 7.36 (t, J 7.2 Hz, 2H, H3’ and H5’), 7.56 (d, J 7.2Hz, 2H, H2’ and H6’). 13C NMR (100.6 MHz, CDCl3): = 22.37 (CH3CO), 24.68 (C-cHex), 24.74 (C-cHex), 25.48 (C-cHex), 32.69 (C-cHex), 32.73 (C-cHex), 48.68 (C1-cHex), 50.78 (NCH2), 55.26 (OCH3), 58.73 (-CH), 113.97 (C3’’ and C5’’), 122.30 (C4), 125.79 (C2’ and C6’), 127.70 (C2’’,C4’ and C-6’’), 128.90 (C3’ and C5’), 129.25 (C1’’), 130.42 (C3), 134.02 (C1’), 136.28 (C2), 146.36 (C5), 158.82 (C4’’), 167.65 (C=O amide), 172.17 (CH3CO). IR (liquid film, cm-1):  = 3301, 3060, 2931, 2854, 1649, 1585, 1544, 1513, 1462, 1450, 1407, 1364, 1350, 1303, 1289, 1247, 1209, 1176, 1110, 1093, 1074, 1033, 978, 956, 917, 892, 813, 757, 701, 665, 543. UV/Vis (ethanol, nm): max (log ) = 286 (4.01). MS: m/z (ESI, %) 477 (M+, 100). HMRS: m/z (ESI) calc. for C28H33N2O3S 477.22064, found 477.22014.
N-Cyclohexyl-2-(N-(4’’-methoxybenzyl)acetamido)-2-(5-(4’-methoxyphenyl)thiophen-2-yl)acetamide 2c. Starting from 2-formyl-5-(4’-methoxyphenyl)thiophene 1c (0.086 g, 3.95 × 10-4 mol), 4-methoxybenzylamine (0.05 mL, 3.95 × 10-4 mol), acetic acid (0.02 mL, 3.95 × 10-4 mol) and cyclohexyl isocyanide (0.05 mL, 3.95 × 10-4 mol), compound 2c was obtained as an orange oil (0.050 g, 9.87 × 10-5 mol, 25%). 1H NMR (400 MHz, CDCl3): = 1.07-1.18 (m, 3H, 3 × H-cHex), 1.26-1.38 (m, 2H, 2 × H-cHex), 1.55-1.70 (m, 3H, 3 × H-cHex), 1.82-1.94 (m, 2H, 2x × H-cHex), 2.10 (s, 3H, CH3CO), 3.75 (s, 4H, 4’’-OCH3 and H1-cHex), 3.83 (s, 3H, 4’-OCH3), 4.57-4.68 (m, 2H, NCH2), 5.87 (s, 1H, -H), 6.04 (d, J 8.0 Hz, 1H, NH), 6.78 (d, J 8.4 Hz, 2H, H3’’ and H5’’), 6.89 (d, J 8.8 Hz, 2H, H3’ and H5’), 6.99 (s, 2H, H3 and H4), 7.08 (d, J 8.4 Hz, 2H, H2’’ and H6’’), 7.48 (d, J 8.8 Hz, 2H, H2’ and H6’). 13C NMR (100.6 MHz, CDCl3): = 22.31 (CH3CO), 24.63 (C-cHex), 24.69 (C-cHex), 25.42 (C-cHex), 32.62 (C-cHex), 32.66 (C-cHex), 48.59 (C1-cHex), 50.67 (NCH2), 55.19 (4’’-OCH3), 55.29 (4’-OCH3), 58.69 (-CH), 113.89 (C3’’ and C5’’), 114.22 (C3’ and C5’), 121.18 (C4), 126.81 (C1’), 127.00 (C2’ and C6’), 127.70 (C2’’ and C6’’), 129.01 (C1’’), 130.32 (C3), 135.05 (C2), 146.24 (C5), 158.72 (C4’’), 159.35 (C4’), 167.67 (C=O amide), 172.08 (CH3CO). IR (liquid film, cm-1):  = 3410, 3297, 3066, 3001, 2932, 2854, 1650, 1632, 1612, 1586, 1544, 1513, 1463, 1409, 1364, 1351, 1287, 1249, 1177, 1111, 1090, 1033, 979, 957, 917, 892, 830, 805. UV/Vis (ethanol, nm): max (log ) = 299 (4.21). MS: m/z (ESI, %) 507 (M+, 100). HMRS: m/z (ESI) calc. for C29H35N2O4S 507.23120, found 507.23085.
N-Cyclohexyl-2-(N-(4’’-methoxybenzyl)acetamido)-2-(5-(4’-ethoxyphenyl)thiophen-2-yl)acetamide 2d. Starting from 2-formyl-5-(4’-ethoxyphenyl)thiophene 1d (0.187 g, 8.05 × 10-4 mol), 4-methoxybenzylamine (0.11 mL, 8.05 × 10-4 mol), acetic acid (0.05 mL, 8.05 × 10-4 mol) and cyclohexyl isocyanide (0.10 mL, 8.05 × 10-4 mol), compound 2d was obtained as an orange oil (0.109 g, 2.09 × 10-4 mol, 26%). 1H NMR (400 MHz, CDCl3): = 1.08-1.17 (m, 3H, 3 × H-cHex), 1.26-1.37 (m, 2H, 2 × H-cHex), 1.40 (t, J 6.8 Hz, 3H, OCH2CH3), 1.54-1.67 (m, 3H, 3 × H-cHex), 1.81-1.93 (m, 2H, 2 × H-cHex), 2.07 (s, 3H, CH3CO), 3.72 (s, 4H, OCH3 and H1-cHex), 4.02 (q, J 6.8 Hz, 2H, OCH2CH3), 4.56-4.67 (m, 2H, NCH2), 5.90 (s, 1H, -H), 6.18 (d, J 2.4 Hz, 1H, NH), 6.79 (d, J 8.6 Hz, 2H, H3’’ and H5’’), 6.86 (d, J 8.8 Hz, 2H, H3’ and H5’), 6.97 (s, 2H, H3 and H4), 7.06 (d, J 8.6 Hz, 2H, H2’’ and H6’’), 7.44 (d, J 8.8Hz, 2H, H2’ and H6’). 13C NMR (100.6 MHz, CDCl3): = 14.64 (OCH2CH3), 22.23 (CH3CO), 24.55 (C-cHex), 24.61 (C-cHex), 25.50 (C-cHex), 32.50 (C-cHex), 32.53 (C-cHex), 48.50 (C1-cHex), 50.52 (NCH2), 55.07 (OCH3), 58.48 (-CH), 63.39 (OCH2CH3), 113.78 (C3’’ and C5’’), 114.67 (C3’ and C5’), 121.03 (C4), 126.86 (C2’ and C6’), 127.59 (C2’’ and C6’’), 129.01 (C1’’), 130.19 (C3), 131.86 (C1’), 135.05 (C2), 146.15 (C5), 158.60 (C4’ and C4’’), 167.62 (C=O amide), 172.02 (CH3CO). IR (liquid film, cm-1):  = 3410, 3297, 3062, 2979, 2930, 2855, 1652, 1611, 1586, 1572, 1544, 1513, 1463, 1408, 1364, 1351, 1303, 1287, 1248, 1177, 1116, 1090, 1039, 979, 958, 921, 892, 825, 803. UV/Vis (ethanol, nm): max (log ) = 299 (4.21). MS: m/z (ESI, %) 342 (M+-178, 100), 521 (M+, 89). HMRS: m/z (ESI) calc. for C30H37N2O4S 521.24685, found 521.24652.
N-Cyclohexyl-2-(N-(4’’-methoxybenzyl)acetamido)-2-(5-(4’-phenoxyphenyl)thiophen-2-yl)acetamide 2e. Starting from 2-formyl-5-(4’-phenoxyphenyl)thiophene 1e (0.188 g, 6.70 × 10-4 mol), 4-methoxybenzylamine (0.09 mL, 6.70 × 10-4 mol), acetic acid (0.04 mL, 6.70 × 10-4 mol) and cyclohexyl isocyanide (0.08 mL, 6.70 × 10-4 mol), compound 2e was obtained as an orange oil (0.080 g, 1.41 × 10-4 mmol, 21%). 1H NMR (300 MHz, CDCl3): = 1.10-1.19 (m, 3H, 3 × H-cHex), 1.26-1.40 (m, 2H, 2 × H-cHex), 1.55-1.70 (m, 3H, 3 × H-cHex), 1.83-1.95 (m, 2H, 2 × H-cHex), 2.11 (s, 3H, CH3CO), 3.75 (s, 4H, OCH3 and H1-cHex), 4.63 (d, J 4.8Hz, 2H, NCH2), 5.89 (br s, 1H, -H), 6.04 (d, J 7.8 Hz, 1H, NH), 6.79 (d, J 8.7 Hz, 2H, H3’’’ and H5’’’), 7.08 (d, J 8.7 Hz, 2H, H2’’’ and H6’’’), 6.98-7.05 (m, 6H, H3, H4, H2’’, H3’, H5’ and H6’’), 7.13 (dt, J 6.0 and 0.9 Hz, 1H, H4’’), 7.36 (dt, J 6.0 and 0.9 Hz, 2H, H3’’ and H5’’), 7.51 (d, J 8.7 Hz, 2H, H2’ and H6’). 13C NMR (75.4 MHz, CDCl3): = 22.33 (CH3CO), 24.63 (C-cHex), 24.69 (C-cHex), 25.42 (C-cHex), 32.63 (C-cHex), 32.68 (C-cHex), 48.61 (C1-cHex), 50.68 (NCH2), 55.20 (OCH3), 58.63 (-CH), 113.90 (C3’’’ and C5’’’), 118.98 (C2’’ and C6’’), 119.02 (C3’ and C5’), 121.80 (C4), 123.52 (C4’’), 127.17 (C2’ and C6’), 127.71 (C2’’’ and C6’’’), 129.14 (C1’’’), 129.78 (C3’’ and C5’’), 130.38 (C3), 135.79 (C2), 140.09 (C1’), 145.76 (C5), 156.79 (C1’’), 157.08 (C4’), 158.75 (C4’’’), 167.61 (C=O amide), 172.11 (CH3CO). IR (liquid film, cm-1):  = 3301, 3060, 2931, 2854, 1649, 1585, 1544, 1513, 1462, 1450, 1407, 1364, 1350, 1303, 1289, 1247, 1209, 1176, 1110, 1093, 1074, 1033, 978, 956, 917, 892, 813, 757, 701, 665, 543. UV/Vis (ethanol, nm): max (log ) = 299 (4.15). MS: m/z (ESI, %) 390 (M+-178, 100), 569 (M+, 96). HMRS: m/z (ESI) calc. for C34H37N2O4S 569.24685, found 569.24654.
2-(5-(4’-Cyanophenyl)thiophen-2-yl)-N-cyclohexyl-2-(N-(4’’-methoxybenzyl)acetamido)acetamide 2f. Starting from 2-formyl-5-(4’-cyanophenyl)thiophene 1f (0.148 g, 6.97 × 10-4 mol), 4-methoxybenzylamine (0.09 mL, 6.97 × 10-4 mol), acetic acid (0.04 mL, 6.97 × 10-4 mol) and cyclohexyl isocyanide (0.09 mL, 6.97 × 10-4 mol), compound 2f was obtained as an orange oil (0.091 g, 1.88 × 10-4 mol, 27%). 1H NMR (300 MHz, CDCl3): = 1.09-1.16 (m, 3H, 3 × H-cHex), 1.24-1.37 (m, 2H, 2 × H-cHex), 1.54-1.67 (m, 3H, 3 × H-cHex), 1.79-1.92 (m, 2H, 2 × H-cHex), 2.11 (s, 3H, CH3CO), 3.72 (s, 4H, OCH3 and H1-cHex), 4.61 (d, J 3.0Hz, 2H, NCH2), 5.97 (s, 1H, -H), 6.22 (d, J 6.9 Hz, 1H, NH), 6.76 (d, J 7.2 Hz, 2H, H3’’ and H5’’), 7.03 (d, J 7.2 Hz, 2H, H2’’ and H6’’), 7.03 (d, J 3.9 Hz, 1H, H3), 7.19 (d, J 3.9 Hz, 1H, H4), 7.58-7.63 (m, 4H, H2’, H3’, H5’ and H6’). 13C NMR (75.4 MHz, CDCl3): = 22.25 (CH3CO), 24.54 (C-cHex), 24.59 (C-cHex), 25.30 (C-cHex), 32.49 (C-cHex), 32.54 (C-cHex), 48.61 (C1-cHex), 50.49 (NCH2), 55.13 (OCH3), 58.06 (-CH), 110.59 (C4’), 113.85 (C3’’ and C5’’), 118.63 (CN), 124.13 (C4), 125.81 (C2’ and C6’), 127.60 (C2’’ and C6’’), 128.63 (C1’’), 130.51 (C3), 132.58 (C3’ and C5’), 138.19 (C1’), 138.68 (C2), 143.62 (C5), 158.73 (C4’’), 167.23 (C=O amide), 172.15 (CH3CO). IR (liquid film, cm-1):  = 3301, 3061, 2999, 2933, 2855, 2226, 1657, 1604 1586, 1538, 1513, 1463, 1451, 1409, 1364, 1350, 1303, 1289, 1248, 1208, 1177, 1111, 1092, 1034, 979, 958, 941, 918, 892, 838, 814, 736, 701, 665, 543, 514. UV/Vis (ethanol, nm): max (log ) = 317 (4.22). MS: m/z (ESI, %) 502 (M+, 100). HMRS: m/z (ESI) calc. for C29H32N3O3S 502.21589, found 502.21535.
N-Cyclohexyl-2-(N-(4’’-methoxybenzyl)acetamido)-2-(5-(4’-nitrophenyl)thiophen-2-yl)acetamide 2g. Starting from 2-formyl-5-(4’-nitrophenyl)thiophene 1g (0.186 g, 8.00 × 10-4 mol), 4-methoxybenzylamine (0.10 mL, 8.00 × 10-4 mol), acetic acid (0.05 mL, 8.00 × 10-4 mol) and cyclohexyl isocyanide (0.10 mL, 8.00 × 10-4 mol), compound 2g was obtained as a yellow oil (0.137 g, 2.72 × 10-4 mol, 34%). 1H NMR (400 MHz, CDCl3): = 1.09-1.16 (m, 3H, 3 × H-cHex), 1.27-1.32 (m, 2H, 2 × H-cHex), 1.61-1.66 (m, 3H, 3 × H-cHex), 1.82-1.93 (m, 2H, 2 × H-cHex), 2.10 (s, 3H, CH3CO), 3.71 (s, 4H, OCH3 and H1-cHex), 4.62 (d, J 8.0Hz, 2H, NCH2), 6.03 (s, 1H, -H), 6.33 (d, J 7.6 Hz, 1H, NH), 6.75 (d, J 8.8 Hz, 2H, H3’’ and H5’’), 7.03 (d, J 3.6 Hz, 1H, H3), 7.06 (d, J 8.6 Hz, 2H, H2’’ and H6’’), 7.23 (d, J 3.6 Hz, 1H, H4), 7.63 (t, J 7.2 Hz, 2H, H2’ and H6’), 8.14 (d, J 7.2Hz, 2H, H3’ and H5’). 13C NMR (100.6 MHz, CDCl3): = 22.22 (CH3CO), 24.52 (C-cHex), 24.57 (C-cHex), 25.29 (C-cHex), 32.45 (C-cHex), 32.52 (C-cHex), 48.59 (C1-cHex), 50.39 (NCH2), 55.09 (OCH3), 57.89 (-CH), 113.82 (C3’’ and C5’’), 124.18 (C3’ and C5’), 124.68 (C4), 125.70 (C2’ and C6’), 127.57 (C2’’ and C6’’), 128.64 (C1’’), 130.52 (C3), 139.43 (C2), 140.09 (C1’), 143.00 (C5), 146.51 (C4’), 158.71 (C4’’), 167.14 (C=O amide), 172.11 (CH3CO). IR (liquid film, cm-1):  = 3301, 3066, 2931, 2854, 1737, 1648, 1630, 1588, 1543, 1512, 1489, 1463, 1408, 1364, 1350, 1303, 1288, 1243, 1202, 1171, 1108, 1071, 1035, 978, 958, 916, 891, 869, 836, 803, 751, 736, 660, 512, 503. UV/Vis (ethanol, nm): max (log ) = 349 (4.21). MS: m/z (ESI, %) 522 (M+, 100). HMRS: m/z (ESI) calc. for C28H32N3O5S 522.20572, found 522.20509.
N-Cyclohexyl-2-(5'-methoxy-[2,2'-bithiophen]-5-yl)-2-(N-(4’’-methoxybenzyl)acetamido)acetamide 2i. Starting from 5-formyl-5’-methoxy-2,2’-bithiophene 1i (0.142 g, 6.34 × 10-4 mol), 4-methoxybenzylamine (0.08 mL, 6.34 × 10-4 mol), acetic acid (0.04 mL, 6.34 × 10-4 mol) and cyclohexyl isocyanide (0.08 mL, 6.34 × 10-4 mol), compound 2i was obtained as an orange oil (0.131 g, 2.60 × 10-4 mol, 41%). 1H NMR (400 MHz, CDCl3): = 1.08-1.16 (m, 3H, 3 × H-cHex), 1.26-1.32 (m, 2H, 2 × H-cHex), 1.53-1.66 (m, 3H, 3 × H-cHex), 1.79-1.90 (m, 2H, 2 × H-cHex), 2.06 (s, 3H, CH3CO), 3.73 (s, 4H, 4’’-OCH3 and H1-cHex), 3.86 (s, 3H, 4’-OCH3), 4.54-4.65 (m, 2H, NCH2), 5.86 (s, 1H, -H), 6.08 (d, J 3.8 Hz, 1H, H4’), 6.21 (br s, 1H, NH), 6.74 (d, J 4.0 Hz, 2H, H3 and H4), 6.77 (d, J 8.4 Hz, 2H, H3’’ and H5’’), 6.87 (d, J 3.8 Hz, 1H, H3’), 7.05 (d, J 8.4 Hz, 2H, H2’’ and H6’’). 13C NMR (100.6 MHz, CDCl3): = 22.22 (CH3CO), 24.57 (C-cHex), 24.64 (C-cHex), 25.36 (C-cHex), 32.53 (C-cHex), 32.57 (C-cHex), 48.53 (C1-cHex), 50.58 (NCH2), 55.12 (4’’-OCH3), 58.48 (-CH), 60.14 (4’-OCH3), 104.32 (C4’), 113.84 (C3’’ and C5’’), 121.07 (C4), 121.52 (C3), 123.23 (C5’), 127.65 (C2’’ and C6’’), 128.88 (C1’’), 129.88 (C3’), 134.47 (C2), 140.04 (C5), 158.68 (C4’’), 165.66 (C2’), 167.49 (C=O amide), 172.00 (CH3CO). IR (liquid film, cm-1):  = 3411, 3302, 3068, 3007, 2933, 2854, 1650, 1632, 1586, 1532, 1513, 1498, 1462, 1451, 1408, 1350, 1303, 1289, 1249, 1202, 1176, 1111, 1092, 1052, 1036, 993, 911, 892, 873, 803, 770, 732, 646, 510. UV/Vis (ethanol, nm): max (log ) = 329 (4.20). MS: m/z (ESI, %) 334 (M+-178, 100), 513 (M+, 49). HMRS: m/z (ESI) calc. for C27H33N2O4S2 513.18763, found 513.18750.
2-(5'-Cyano-[2,2'-bithiophen]-5-yl)-N-cyclohexyl-2-(N-(4’’-methoxybenzyl)acetamido)acetamide 2j. Starting from 5’-cyano-5-formyl-2,2’-bithiophene 1j (0.175 g, 8.00 × 10-4 mol), 4-methoxybenzylamine (0.10 mL, 8.00 × 10-4 mol), acetic acid (0.05 mL, 8.00 × 10-4 mol) and cyclohexyl isocyanide (0.10 mL, 8.00 × 10-4 mol), compound 2j was obtained as an orange oil (0.052 g, 1.20 × 10-4 mol, 15%). 1H NMR (400 MHz, CDCl3): = 1.10-1.19 (m, 3H, 3 × H-cHex), 1.26-1.35 (m, 2H, 2 × H-cHex), 1.57-1.70 (m, 3H, 3 × H-cHex), 1.83-1.93 (m, 2H, 2 × H-cHex), 2.14 (s, 3H, CH3CO), 3.76 (s, 4H, OCH3 and H1-cHex), 4.60 (s, 2H, NCH2), 5.93 (s, 1H, -H), 6.11 (d, J 8.0 Hz, 1H, NH), 6.79 (d, J 8.4 Hz, 2H, H3’’ and H5’’), 6.95 (d, J 3.8 Hz, 1H, H3), 7.04 (d, J 8.4 Hz, 2H, H2’’ and H6’’), 7.06 (d, J 3.8 Hz, 1H, H4), 7.09 (d, J 3.8 Hz, 1H, H3’), 7.51 (d, J 3.8 Hz, 1H, H4’). 13C NMR (100.6 MHz, CDCl3): = 22.28 (CH3CO), 24.60 (C-cHex), 24.65 (C-cHex), 25.39 (C-cHex), 32.58 (C-cHex), 32.65 (C-cHex), 48.72 (C1-cHex), 50.62 (NCH2), 55.25 (OCH3), 58.10 (-CH), 107.61 (C5’), 113.98 (C3’’ and C5’’), 114.12 (CN), 123.50 (C3’), 124.85 (C4), 127.74 (C2’’ and C6’’), 128.47 (C1’’), 130.33 (C5’), 136.84 (C2’), 138.23 (C4’), 138.48 (C2), 144.29 (C5), 158.92 (C4’’), 167.17 (C=O amide), 172.25 (CH3CO). IR (liquid film, cm-1):  = 3302, 3070, 2998, 2932, 2854, 2217, 1652, 1586, 1532, 1513, 1464, 1451, 1436, 1407, 1363, 1351, 1303, 1292, 1248, 1207, 1177, 1112, 1093, 1035, 979, 963, 918, 805, 736, 709, 512. UV/Vis (ethanol, nm): max (log ) = 337 (4.21). MS: m/z (ESI, %) 508 (M+, 100). HMRS: m/z (ESI) calc. for C27H30N3O3S2 508.17231, found 508.17183.

2. Spectrofluorimetric titrations of compound 2b with all the tested ions (in acetonitrile)


3. Spectrofluorimetric titrations of compound 2h with all the tested ions (in acetonitrile)


4. Spectrofluorimetric titrations of compounds 2a-j with Fe3+ (in acetonitrile)
2a

2b

2c

2d

2e

2f

2h

2j


5. Job’s plot for compound 2i with Cu2+ (in acetonitrile)
2i

2i + Cu2+


Yüklə 311,47 Kb.

Dostları ilə paylaş:
1   2   3




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə