Blue Green Solutions



Yüklə 327,82 Kb.
Pdf görüntüsü
səhifə11/11
tarix24.12.2017
ölçüsü327,82 Kb.
#17221
1   2   3   4   5   6   7   8   9   10   11

40

41

Blue Green Solutions Guide

Case study 6: Imperial College London

Monitoring and modelling of the operational performance of BG solutions 

at the level of an individual building.

Background

BG Systems Approach 

Main Outcomes

Monitoring and modelling the performance 

of BG solutions is crucial to: 1) quantify the 

difference between their actual and potential 

(design) performance; and 2) optimise their 

design to maximise their benefits. At Imperial 

College London, a living lab (Figure 25) has 

been established, focussed around three 

multifunctional green roof plots, for measuring 

and modelling the water-energy interactions 

outlined in Chapter 4.

The data collected was used to create new, 

or improve existing water and energy balance 

models, for describing the interaction of the 

multifunctional roof with its environment. 

Precipitation, runoff and temperature data were 

used to assess/model benefits of green roof 

plots. These benefits comprise reduction of flood 

risk due to delayed, reduced peak storm water 

runoff and cooling due to transpiration by plants 

and related evaporative processes. 

In addition to analysing observed data, the 

evaporative cooling of roof plots was investigated 

using simulation tools of varying complexity: 1) the 

Improved water balance (hydrologic) model 

37

;  2) an 



Urban Energy Balance model

38

; and 3) Large Eddy 



Simulation (LES)

39

. Furthermore, the monitoring 



results are currently used for development and 

testing of a Blue Green module for a Building 

Information Management (BIM) software system 

40

Water retention capacity was assessed for the 



three experimental green roof plots, of which two 

are extensive (A – 70/25mm and B – 70/32mm 

substrate/drainage layer depths, respectively) 

and one is intensive (C – 150/45 mm substrate/

drainage layer depth). Observed data showed that 

for the London climate, rainwater retention is high 

(>45 per cent of incoming rainfall captured), with 

intensive green roofs retaining as much as 82 per 

cent of rainwater. In addition, the high temporal 

resolution of the logged data (i.e. measurements 

are recorded at frequent intervals over each 

hour of operation) enables the modelling of 

multifunctional roof dynamics, which is important 

for analysis of flood management processes.

The simulations of the evaporative cooling effect 

of the green roofs using the Urban Energy Balance 

model

41

, showed that the cooling effect of the roof 



surfaces in summer is considerable. Vegetated 

surfaces are 10°C colder than a conventional roof 

on a daily mean, and up to 30°C colder during the 

hottest hours. The heat transfer through green 

roof is thus reduced considerably compared 

to a conventional roof, leading to substantial 

energy savings due to reduced demand for air 

conditioning and ventilation.

          The roof is equipped with instruments to measure weather conditions             rainfall

          water quality             runoff            soil moisture              and soil and roof temperature 



Multifunctional roof plots on the Eastside building at Imperial College London.

Cumulative rainfall (in black) and runoff for the roof plots during the year 2015

24

25

1

2

5

6

3

4

1

2

3

4

6

5

..............................................................................................................................

..............................................................................................................................

..............................................................................................................................

..............................................................................................................................

800

400



Jan

Dec

Jun / Jul

Average annual water retention [%]

46%

- Green roof A - 70/25mm

- Green roof B - 70/32mm

- Green roof C - 150/45mm

59%

82%

A

*

B

C

A

*

B

C

- Conventional roof

Cumulative run-off [mm]



42

43

Blue Green Solutions Guide

Bridging the Information Gap: 

the BG Team

Blue-Green (BG) Solutions, if planned and 

implemented in sympathy with their surroundings, 

are transformative for the resilience, resource 

efficiency and quality of life of the host city and 

its overall sustainability. In this guide we have 

presented the innovative, BG Systems planning 

framework for systematically integrating BG 

Solutions with the cityscape to maximise both 

their benefits and their cost-effectiveness.  

Our case studies illustrate the added value that 

the BG systems approach brings to different 

urban contexts. Key conclusions are:

The systematic incorporation of BG 

solutions into urban plans yields 

substantial reductions in life-cycle costs 

(case studies 1, 2, 3, 4, 5).

Through mapping and unlocking potential 

synergies with the local built environment, 

the BG Systems approach ensures that 

BG Solutions provide cost effective, 

sustainable enhancements to quality of 

life and resilience to extreme weather 

events (case studies 1, 2, 3, 4, 5). 

The added value of the BG Systems 

approach is fully realised through looking 

beyond the principal purpose of BG 

Solutions installations to embrace their 

wider (co-) benefits – e.g. wellbeing 

improvement (case study 2).

Stakeholder consultation and engagement 

is crucial to maximising effectiveness of 

BG Solutions (case studies 1, 2, 3, 4, 5). 

Continuous monitoring of installed BG 

Solutions is playing a crucial role in building 

an evidence-base for the effectiveness of 

their ecosystem service derived benefits 

(case study 6). 

The BG Systems approach primarily 

realises the potential of BG Solutions via its 

reconceptualization of the planning and design 

process. BG Solutions are inherently cross-

sectorial.  To optimise their benefits, it is therefore 

necessary to conduct an extensive, systems-level 

analysis at the pre-design stage. This analysis 

presents two challenges: firstly, there needs to be 

a driver/incentive for carrying it out and secondly, 

assigning responsibility for this task.

The driver for this pre-design analysis is saving 

costs, improving sustainability and boosting 

resilience. The analysis itself involves full life-

cycle analyses of the design/planning options. As 

described on page 24, the Goal Driven Planning 

Matrix (GDPM) has been developed to aid this 

process.  However, to deliver maximum benefits

client and stakeholder requirements both need 

to be mapped and aligned. This is a radical 

component of the BG Systems approach, termed 

the BG Design Brief.

The key innovation here – apart from the 

tools described in Chapters 3 and 4 – is the 

introduction of a new participatory group in the 



6. Outlook


44

45

Blue Green Solutions Guide

design process: the BG Team. This is a group of 

experts responsible for leading the pre-design 

analysis. A key role of theirs is to exploit beneficial 

interactions between the various disciplines 

present in the planning team and especially, 

bridge information gaps within the planning team.

Retrofit


Cities are largely undergoing continual expansion 

and regeneration. The majority of the built 

environment however - especially in Europe 

- that will be present in 2050 has already been 

built. Existing, especially 19-20th century building 

stock, is typically less energy efficient and resilient 

than new-build.  In order, therefore, to meet 

stringent carbon emission reduction targets, and 

protect against climate change, the focus must 

be on upgrading and enhancing existing building 

stock. A big need for the BG Systems approach is 

therefore within the retrofit sector.  

Legislation for Urban Sustainable 

Development

The most effective means for expediting 

a BG systems paradigm shift is, without 

doubt, enhancing and implementing planning 

standards and legislation that fosters or even 

mandates resource efficient practices. Possible 

interventions include:

Requiring additional analyses for project 

approval – e.g. cost dependence analysis 

(Page 31).

Upgrading compliance criteria. National, 

regional and city building regulations can 

be revised to tighten minimum compliance 

criteria relevant to resource efficiency, 

resilience to extreme weather events and 

quality of life.

Revision/supplementation of certification 

schemes. This involves introducing 

performance criteria specific to BG 

Solutions and stipulating post-construction 

performance monitoring and approval. 

Ideally, environmental (BG Systems specific) 

quality standards should be factored into 

national and local governments’ key performance 

indicators for the attainment of international 

standards and targets such as the Sustainable 

Development Goals. It is vital also to recognize 

that the higher the level at which action is taken, 

the larger the change will be (Figure 7– downward 

triangle). Hence, for a Blue Green revolution to 

drive the envisioned reimagining of our cities, 

policy and law makers operating at national and 

international levels need to be engaged.

The Need for Post-Construction 

Monitoring 

Changes in legislation and standard practice 

require a strong evidence base. The cases 

presented here and in other guides provide a 

starting point, but there is a need for extensive 

evidence collection from full-scale developments 

that feature BG Solutions at global scale. This 

data is a potent means of dispelling some of the 

myths surrounding Blue Green Solutions (e.g. 

that they are not cost-effective, especially for 

developers) and aiding the accurate calculation of 

the benefits and cost-savings that they deliver to 

all stakeholders. 

Final Remarks

There is a broad and growing consensus that BG 

solutions have the potential to mitigate many 

current and future urban pressures. Achieving 

this potential requires multi-sector, systematic 

planning and detailed analysis of interactions 

between all components of a cityscape to 

identify the most cost-effective, sustainable 

interventions. The BG Systems approach 

facilitates this process, across different climates 

and types of cities. 

This guide is a call for the joined-up thinking and 

holistic, rigorous analyses pioneered by the BG 

Systems approach, to futureproof our cities and 

deliver an urban environment that is truly liveable.



46

47

Blue Green Solutions Guide

References

1. 

Barata, M., E. Ligeti, G.D. Simone, T. 



Dickinson, D. Jack, J. Penney, M. Rahman, and 

R. Zimmerman, Climate change and human 

health in cities. Climate Change and Cities: First 

Assessment Report of the Urban Climate Change 

Research Network. Cambridge University Press, 

Cambridge, UK, 2011.

2. 

United Nations Department of Economic, 



Social Affairs, Population Division, World 

Urbanization Prospects: The 2014 Revision. (ST/

ESA/SER.A/366), 2015.

3. 


United Nations Human Settlements 

Programme, Global report on human settlements 

2011 - Cities and climate change. 2011.

4. 


IFRC, World Disasters Report 2010: 

Focus on Urban Risk. International Federation 

of Red Cross and Red Crescent Societies (IFRC), 

Geneva, Switzerland, 211 pp, 2010.

5. 

Heaviside, C., S. Vardoulakis, and X. Cai, 



Attribution of mortality to the urban heat island 

during heatwaves in the West Midlands, UK. 

Environmental Health, 2016.

6. 


Revi, A., D.E. Satterthwaite, F. Aragón-

Durand, J. Corfee-Morlot, R.B.R. Kiunsi, M. Pelling, 

D.C. Roberts, and W. Solecki, Urban areas. In: 

Climate Change 2014: Impacts, Adaptation, and 

Vulnerability. Part A: Global and Sectoral Aspects. 

Contribution of Working Group II to the Fifth 

Assessment Report of the Intergovernmental 

Panel on Climate Change. Cambridge University 

Press, Cambridge, United Kingdom and New York, 

NY, USA, 2014.

7. 

ARUP, Cities Alive - Green Building 



Envelope. 2016.

8. 


UK Green Building Council, Demystifying 

Green Infrastructure. 2015.

9. 

European Commission - Environment, 



The Multifunctionality of Green Infrastructure. 

Science for Environment Policy | In-depth 

Reports, 2012.

10.  UNEP, Green Infrastructure Guide 

for Water Management: Ecosystem-based 

management approaches for water-related 

infrastructure projects. (DEP/1827/NA), 2014.

11. 


Tzoulas, K., K. Korpela, S. Venn, V. Yli-

Pelkonen, A. Kazmierczak, J. Niemela, and P. 

James, Promoting ecosystem and human health 

in urban areas using Green Infrastructure: A 

literature review. Landscape and urban planning, 

2007.


12. 

Maksimović, Č., M. Kurian, and R. 

Ardakanian, Rethinking Infrastructure Design 

for Multi-Use Water Services, Springer Briefs in 

Environmental Science. 2015.

13. 


businessGreen technology award 2015. 

R&D Programme of the Year. 2015; Available 

from: http://events.businessgreen.com/

technologyawards/static/winners-2015.

14. 

Cohen-Schacham, E., G. Walters, C. 



Janzen, and S. Maginnis, Nature based Solutions 

to Address Global Societal Challenges. IUCN, 

Gland, Switzerland, 2016.

15. 


IUCN, The IUCN Programme 2013-2016. 

IUCN, Gland, Switzerland, 2012.

16. 

Charlesworth, S.M., E. Harker, and 



S. Rickard, A Review of Sustainable Drainage 

Systems (SuDS): A Soft Option for Hard Drainage 

Questions? Geography, 2003. 88(2): p. 99-107.

17. 


Wong, T.H.F., An overview of water 

sensitive urban design practices in Australia. 

Water Practice & Technology, 2006.

18. 


Maksimović, Č., S. Stanković, R. Božović, 

C. Makropoulos, I. Mirosavić, and M. Mirosavić, 

Trends in sustainable design of future cities, Proc. 

of the Workshop: Cities of the Future. University 

of Ljubljana, Slovenia, 2014.

19. 


Blue Green Dream. Available from: 

http://bgd.org.uk/.

20. 

Gardens by the bay



 Available from: http://www.gardensbythebay.

com.sg.


21. 

High Line. Available from: http://www.

thehighline.org/.

22.  Blue-Green Wave. Available from: 

https://hmco.enpc.fr/Page/Blue-Green-Dream-

Wave/en.


23. 

Liget Budapest. Available from: http://

www.ligetbudapest.org.

24. 


Village Nature. Available from: http://

www.villagesnature.com/.

25. 

Curitiba. Available from: http://www.



curitiba.pr.gov.br.

26. 


Wild West End. Available from: http://

www.wildwestend.london/.

27. 

Smart Sustainable Districts. Available 



from: http://ssd-utrecht.nl.

28. 


Versini, P.A., A. Gires, G. Fitton, and I. 

Tchiguirinskaia, Schertzer, D., ENPC Blue Green 

Wave : a Blue Green Dream pilot site to assess 

spatio-temporal variability of hydrological 

components in green infrastructures. Urban 

Water Journal, 2016(under review).

29. 

Rozos, E., C. Makropoulos, and Č. 



Maksimović, Rethinking urban areas: an example 

of an integrated blue-green approach, Water 

Science and Technology. Vol. Water Supply, 

November 2013, 13 (6) 1534-1542. 2013: IWA 

Publishing.

30. 


Akbari, H., Shade trees reduce building 

energy use and CO2 emissions from power plants. 

Environmental Pollution, 2002. 116, Supplement 

1: p. S119-S126.

31. 

IPCC, Summary for policymakers. In: 



Climate Change 2014: Impacts, Adaptation, and 

Vulnerability. Part A: Global and Sectoral Aspects. 

Contribution of Working Group II to the Fifth 

Assessment Report of the Intergovernmental 

Panel on Climate Change. Cambridge University 

Press, Cambridge, United Kingdom and New York, 

NY, USA, 2014.

32.  United Nations Secretary-General. 

Climate Resilience Initiative A2R — Anticipate, 

Absorb, Reshape. Available from: http://www.

a2rinitiative.org/.

33. 


Environmental Agency UK. Flood Risk 

Management. Available from: https://www.

gov.uk/government/collections/flood-risk-

management-plans-frmps-2015-to-2021.

34. 

Ciria - susdrain. Available from: http://



www.susdrain.org/.

35.  Multi-Coloured Handbook. Available 

from: http://www.mcm-online.co.uk/manual/.

36. 


Maksimović, Č. and B. Jandrić, Interactions 

of Flood Management and Innovative Spatial 

Planning (interakcije upravljanja poplavama 

i  novih metoda prostornog planiranja). 2014, 

UNPDP BiH project.

37. 


Liu, X., A. Mijic, and Č. Maksimovic, A 

conceptual model for simulating the hydrologic 

performance of extensive green roof systems, 

in The seventh international conference for 

SuDBE2015. 2015: Reading.

38. 


Lemonsu, A., V. Masson, L. Shashua-Bar, 

E. Erell, and D. Pearlmutter, Inclusion of vegetation 

in the Town Energy Balance model for modelling 

urban green areas. Geosci. Model Dev., 2012. 5(6): 

p. 1377-1393.

39. 


Fock, B.H., RANS versus LES models for 

investigations of the urban climate. 2014.

40. 

Huang, C.H., H.J. Kuo, S.H. Hsieh, and 



C. Maksimovic. Methodology for Collaborative 

Development of BIM-enabled Blue-Green Design 

Tools. in The Twenty-Sixth KKHTCNN Symposium 

on Civil Engineering. 2013. Singapore.

41. 

Suter, I., C. Maksimovic, and M. van 



Reeuwijk, A neighbourhood-scale estimate 

for the cooling potential of green roofs. Urban 

Climate, 2017(under review.).



Impressum template

Name of publisher

Address 

Email address and phone number or contact form

If applicable: name of company, legal form, 

authorized represantative

Name and place of register, place, registration 

number.


If applicable: VAT number or Business 

Identification 

Where applicable: supervisory authority

For editorial content: Responsible person



www.website.com 


Yüklə 327,82 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10   11




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə