Blue Green Solutions



Yüklə 327,82 Kb.
Pdf görüntüsü
səhifə3/11
tarix24.12.2017
ölçüsü327,82 Kb.
#17221
1   2   3   4   5   6   7   8   9   10   11

10

11

Blue Green Solutions Guide

NBS-related ecosystem services

Augustenborg, Malmö, Sweden. 

The Augustenborg development in Malmö 

is designed to be a socially, economically 

and environmentally sustainable 

neighbourhood. It is one of Sweden´s 

largest urban sustainability projects, was 

supported by the government´s Local 

Investment Programme and also financed 

by key local partners within Malmö City and 

the MKB housing company.

The project’s results indicate that 

Augustenborg has become an attractive, 

multicultural neighbourhood in which 

the turnover of tenancies has decreased 

by almost 20 per cent and adverse 

environmental impacts have decreased to a 

similar degree.

Blue Green Wave, Paris, France.

The Blue Green Wave [28] is a one hectare 

green roof (the largest in the Paris region) 

located at Cite Descartes, at the École des 

Ponts ParisTech campus. Initially designed 

to deliver only amenity/aesthetic related 

functions, it has been transformed into a 

research-oriented demo site. Completed 

in 2014, it is equipped with monitoring 

equipment to understand the roof’s 

hydrological behaviour and with sensors 

collecting data on rainfall, soil water 

content, temperature and run-off.  The 

ultimate objective is to understand the 

interactions between water and green 

infrastructure and hence, optimise the 

use of such assets for storm water 

management and urban cooling.



3

Resources 

efficiency

Air quality

UHI mitigation

Well-being

Noise reduction

Flood mitigation

Biodiversity

Water quality

Aesthetics

NBS-related

Ecosystem Services



12

13

Blue Green Solutions Guide

Wild West End, London, UK. 

Gardens by the Bay, Singapore.

This project in London’s West End will 

ultimately create an extensive network of 

green corridors which form connections 

between large areas of parkland in London 

in order to enhance biodiversity and 

improve ecological connectivity. One of 

the unique features of the project is that it 

involves a collaboration between several 

land owners: The Crown Estate, Grosvenor 

Britain & Ireland, Shaftesbury, the Howard 

de Walden Estate and The Portman 

Estate. Each partner has committed to 

setting green infrastructure objectives 

for their portfolios and working together 

to share information and data on green 

infrastructure projects across their estates.  

The “super trees” act as a tourist attraction, 

provide recreational areas for locals 

and encourage biodiversity. As well as 

supporting many different species of plants, 

some are also equipped with photovoltaics 

and/or act as air intake and exhaust vents 

(for the neighbouring cooled conservatory 

complex) to make them more sustainable. 

With the Gardens by the Bay project, 

Singapore benefits from a large recreational 

area with many environmentally 

advantageous functions: e.g. water run-

off from the gardens is filtered by reed 

systems and lakes before being discharged 

into the sea. Additionally, all the cooling 

energy needs and circa 80 per cent of 

the conservatory complex’s energy 

consumption is created on site.

The large-scale implementation of NBS has faced 

various barriers. Traditionally, cities have tried 

to achieve various sustainability targets using 

planners’/ architects’/ designers’ perception of 

sustainability and their knowledge and experience. 

These individual targets include improvement 

of vegetation/green space coverage and energy 

efficiency, creation of “green corridors” for 

enhanced biodiversity, etc. However, while 

these solutions have been successful from the 

perspective of achieving individual sustainability 

targets, they leave much of the potential of NBS 

untapped: their multi-functional nature. 

In order to achieve a successful transition to a 

sustainable, resilient and cost-effective city, it is 

necessary to integrate NBS systematically and 

more efficiently with other urban components 

(e.g. streets, roofs, façades, infrastructure etc.; 

see Figure 4). This requires consideration of the 

city and its functions at the systems level. In doing 

so, the performance of the NBS in terms of all 

ecosystem services it provides can be quantified, 

both in terms of tangible (e.g. flood risk reduction) 

and non-tangible (e.g. health and well-being) 

benefits and costs. 



Examples of urban components

4

BG Systems Approach

Interactions-Based Planning

The Blue Green (BG) Systems approach for 

innovative urban planning produces optimised 

urban solutions, hereafter referred to as Blue-

Green (BG) solutions. These harness the synergy 

benefits between urban components and 

ecosystem services, resulting in significantly 

more efficient and cost-effective, multifunctional 

urban solutions (Figure 5). 

The BG Systems approach is applicable to all 

climates (with the possible exception of the 

Polar Regions) and socio-economic conditions. 

Moreover, it is applicable at different scales: from 

an individual building to an entire city. It can also be 



1

1

Building 



2

2

Street 


3

3

Trees 


4

Solar water heating 



4

5

Multifunctional green wall 



5

6

Multi-functional roof garden 



6

7

Storm water harvesting and recycling 



8

Food production 



8

9

Ground water aquifer 



10

Constructed wetland 

Pocket park 

9

11

Urban streams and ponds 



12

11

12

10

7


Yüklə 327,82 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10   11




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə