Causal Analytics for Applied Risk Analysis Louis Anthony Cox, Jr

Yüklə 3.36 Mb.
ölçüsü3.36 Mb.
1   ...   32   33   34   35   36   37   38   39   ...   57


Argudin, M. A., Fetsch, A., Tenhagen, B. A., Kowall, J., Hammerl, J., Kaempe, U., Hertwig, S., Schroter, A., Braunig, J., Kasbohrer, A., Appel, B., Nockler, K., Helmuth, R., Mendoza, M. C., Rodicio, M. R. & Guerra, B. (2009). Virulence and resistance determinants in methicillin-resistant Staphylococcus aureus ST398 isolates. 19th European Congress of Clinical Microbiology and Infectious Diseases. Diseases, E. S. o. C. M. a. I. Helsinki, Finland, Blackwell Publishing.

Boost, M., Ho, J., Guardabassi, L. & O'Donoghue, M. (2012). Colonization of Butchers with Livestock-Associated Methicillin-Resistant Staphylococcus aureus. Zoonoses Public Health, doi: 10.1111/zph.12034 [epub ahead of print](Available at Last accessed on 1/28/2013.
Bootsma, M. C., Wassenberg, M. W., Trapman, P. & Bonten, M. J. (2011). The nosocomial transmission rate of animal-associated ST398 meticillin-resistant Staphylococcus aureus. J R Soc Interface, 8(57), 578-584.
CBS. (2010, 6/16/2010). "Animal Antibiotic Overuse Hurting Humans? Katie Couric Investigates Feeding Healthy Farm Animals Antibiotics. Is it Creating New Drug-Resistant Bacteria? ." CBS Special News Report: Katie Couric Investigates, from
Cox, L. A., Popken, D. A. & Berman, D. W. (2013). Causal versus spurious spatial exposure–response associations in health risk analysis. Critical Reviews in Toxicology, 43(S1), 26-38.
Cuny, C., Nathaus, R., Layer, F., Strommenger, B., Altmann, D. & Witte, W. (2009). Nasal colonization of humans with methicillin-resistant Staphylococcus aureus (MRSA) CC398 with and without exposure to pigs. PLoS One, 4(8), e6800.
Davies, P. (2009). Methicillin Resistant Staphylococcus aureus in pigs, pork products and swine veterinarians. National Pork Board - NPB Final Research Grant Report, #NPB 07-196, Available at Last accessed on 11/8/2011.
Davies, P. (2010). Prevalence and characterization of Methicillin-resistant Staphylococcus aureus (MRSA) in pigs and farm workers on conventional and antibiotic-free swine farms in the USA. . - #08-178, Available at Last accessed on
de Boer, E., Zwartkruis-Nahuis, J. T. M., Wit, B., Huijsdens, X. W., de Neeling, A. J., Bosch, T., van Oosterom, R. A. A., Vila, A. & Heuvelink, A. E. (2009). Prevalence of methicillin-resistant Staphylococcus aureus in meat. International Journal of Food Microbiology, 134(1–2), 52-56.
de Jonge, R., Verdier, J. E. & Havelaar, A. H. (2010). Prevalence of Meticillin-Resistant Staphylococcus Aureus Amongst Professional Meat Handlers in the Netherlands, March-July 2008. Euro Surveillance, 15(46),
Declercq, P., Petre, D., Gordts, B. & Voss, A. (2008). Complicated community-acquired soft tissue infection by MRSA from porcine origin. Infection, 36(6), 590-592.
Denis, O., Suetens, C., Hallin, M., Catry, B., Ramboer, I., Dispas, M., Willems, G., Gordts, B., Butaye, P. & Struelens, M. J. (2009). Methicillin-resistant Staphylococcus aureus ST398 in swine farm personnel, Belgium. Emerg Infect Dis, 15(7), 1098-1101.
EFSA (2009). Scientific Opinion of the Panel on Biological Hazards on a request from the European Commission on Assessment of the Public Health significance of meticillin resistant Staphylococcus aureus (MRSA) in animals and foods. The EFSA Journal, 993(1), 1-73.
Feingold, B. J., Silbergeld, E. K., Curriero, F. C., van Cleef, B. A., Heck, M. E. & Kluytmans, J. A. (2012). Livestock density as risk factor for livestock-associated methicillin-resistant Staphylococcus aureus, the Netherlands. Emerg Infect Dis, 18(11), 1841-1849.
Frana, T. S., Beahm, A. R., Hanson, B. M., Kinyon, J. M., Layman, L. L., Karriker, L. A., Ramirez, A. & Smith, T. C. (2013). Isolation and Characterization of Methicillin-Resistant Staphylococcus aureus from Pork Farms and Visiting Veterinary Students. PLoS One, 8(1), e53738.
Gilbert, M. J., Bos, M. E. H., Duim, B., Urlings, B. A. P., Heres, L., Wagenaar, J. A. & Heederik, D. J. J. (2012). Livestock-associated MRSA ST398 carriage in pig slaughterhouse workers related to quantitative environmental exposure. Occupational and Environmental Medicine, 69(7), 472-478.
Gorwitz, R. J., Kruszon-Moran, D., McAllister, S. K., McQuillan, G., McDougal, L. K., Fosheim, G. E., Jensen, B. J., Killgore, G., Tenover, F. C. & Kuehnert, M. J. (2008). Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001-2004. J Infect Dis, 197(9), 1226-1234.
Graham, P. L., 3rd, Lin, S. X. & Larson, E. L. (2006). A U.S. population-based survey of Staphylococcus aureus colonization. Ann Intern Med, 144(5), 318-325.
Graveland, H., Wagenaar, J. A., Bergs, K., Heesterbeek, H. & Heederik, D. (2011). Persistence of Livestock Associated MRSA CC398 in Humans Is Dependent on Intensity of Animal Contact. PLoS One, 6(2), e16830.
Guardabassi, L., O'Donoghue, M., Moodley, A., Ho, J. & Boost, M. (2009). Novel Lineage of Methicillin-Resistant Staphylococcus aureus, Hong Kong. Emerg Infect Dis, 15(12), 1998-2000.
IARTF (2011). Report of the Iowa Antibiotic Resistance Task Force, a Public Health Guide. - Available at Last accessed on
Kelman, A., Soong, Y. A., Dupuy, N., Shafer, D., Richbourg, W., Johnson, K., Brown, T., Kestler, E., Li, Y., Zheng, J., McDermott, P. & Meng, J. (2011). Antimicrobial susceptibility of Staphylococcus aureus from retail ground meats. J Food Prot, 74(10), 1625-1629.
Khanna, T., Friendship, R., Dewey, C. & Weese, J. S. (2008). Methicillin resistant Staphylococcus aureus colonization in pigs and pig farmers. Vet Microbiol, 128(3-4), 298-303.
Kluytmans, J. A. J. W. (2010). Methicillin-resistant Staphylococcus aureus in food products: cause for concern or case for complacency? Clinical Microbiology and Infection, 16(1), 11-15.
Limbago, B. (2010). Methicillin-Resistant Staphylococcus aureus in the United States - Is There a Connection Between Retail Foods and Human Infection? 2010 Scientific Meeting of the National Antimicrobial Resistance Monitoring System. US-FDA. Atlanta, GA, US-FDA.
Lozano, C., Aspiroz, C., Ezpeleta, A. I., Gomez-Sanz, E., Zarazaga, M. & Torres, C. (2011). Empyema caused by MRSA ST398 with atypical resistance profile, Spain [letter]. . Emerg Infect Dis, 17(1),
Molla, B., Byrne, M., Abley, M., Mathews, J., Jackson, C., Fedorka-Cray, P. J., Sreevatsan, S., Wang, P. & Gebreyes, W. (2012). Epidemiology and Genotypic Characteristics of Methicillin-Resistant Staphylococcus aureus Strains of Porcine Origin J. Clin. Microbiol., 50(11), 3687-3693.
NPB (2010). Pork Quick Facts - The Pork Industry at a Glance. Pork Checkoff - Available at Last accessed on
O'Brien, A. M., Hanson, B. M., Farina, S. A., Wu, J. Y., Simmering, J. E., Wardyn, S. E., Forshey, B. M., Kulick, M. E., Wallinga, D. B. & Smith, T. C. (2012). MRSA in Conventional and Alternative Retail Pork Products. PLoS One, 7(1), e30092.
O'Donoghue, M. & Boost, M. (2004). The prevalence and source of methicillin-resistant Staphylococcus aureus (MRSA) in the community in Hong Kong. Epidemiology and Infection, 132(6), 1091-1097.
Otto, D., Orazem, P. & Huffman, W. (1998). Community and Economic Impacts of the Iowa Hog Industry. In Iowa's Pork Industry--Dollars and Scents Miranowski, J. (ed). Iowa City, IA, ISU-CAIS. Available at Last accessed on 12/16/2009.
Smith, T. C., Gebreyes, W. A., Abley, M. J., Harper, A. L., Forshey, B. M., Male, M. J., Martin, H. W., Molla, B. Z., Sreevatsan, S., Thakur, S., Thiruvengadam, M. & Davies, P. R. (2013). Methicillin-Resistant Staphylococcus aureus in Pigs and Farm Workers on Conventional and Antibiotic-Free Swine Farms in the USA. PLoS One, 8(5), e63704.
Smith, T. C., Male, M. J., Harper, A. L., Kroeger, J. S., Tinkler, G. P., Moritz, E. D., Capuano, A. W., Herwaldt, L. A. & Diekema, D. J. (2009). Methicillin-resistant Staphylococcus aureus (MRSA) strain ST398 is present in midwestern U.S. swine and swine workers. PLoS One, 4(1), e4258.
Smith, T. C., Male, M. J., Harper, A. L., Moritz-Korolev, E. D., Diekema, D. & Herwaldt, L. A. (2008). Isolation of methicillin-resistant Staphylococcus aureus (MRSA) from swine in the midwestern United States. International Conference on Emerging Infectious Diseases. Atlanta, GA.
USBLS. (2012). "Employment by Detailed Occupation - 2010 and Projected 2020." Empoyment by Occupation Retrieved 2/27/2013, 2013, from
USCB (2012). Statistical Abstract of the United States: 2012, Table 1377. Meat Consumption by Type and Country: 2009 and 2010, U.S. Census Bureau

USDA-NASS (2009). 2007 Census of Agriculture, USDA National Agricultural Statistical Services.

USDA (2008). Swine 2006 - Part IV: Changes in the U.S. Pork Industry, 1990-2006. USDA - #N520.1108, Available at Last accessed on 12/16/2009.
van Cleef B., Haenen A., van den Broek M., Huijsdens X.W., Mulders M. & J., K. (2009). Acquisition and persistence of methicillin-resistant Staphylococcus aureus Clonal Complex 398 during occupational exposure. 19th European Congress of Clinical Microbiology and Infectious Diseases. Helsinki, Finland.
Van Cleef, B. A., Broens, E. M., Voss, A., Huijsdens, X. W., Zuchner, L., Van Benthem, B. H., Kluytmans, J. A., Mulders, M. N. & Van De Giessen, A. W. (2010). High prevalence of nasal MRSA carriage in slaughterhouse workers in contact with live pigs in The Netherlands. Epidemiol Infect, 138(5), 756-763.
Van De Griend, P., Herwaldt, L. A., Alvis, B., DeMartino, M., Heilmann, K., Doern, G., Winokur, P., Vonstein, D. D. & Diekema, D. (2009). Community-associated methicillin-resistant Staphylococcus aureus, Iowa, USA. Emerg Infect Dis, 15(10), 1582-1589.
van Rijen, M. M., Van Keulen, P. H. & Kluytmans, J. A. (2008). Increase in a Dutch hospital of methicillin-resistant Staphylococcus aureus related to animal farming. Clinical Infectious Diseases, 46(2), 261-263.
Wassenberg, M. W., Bootsma, M. C., Troelstra, A., Kluytmans, J. A. & Bonten, M. J. (2011). Transmissibility of livestock-associated methicillin-resistant Staphylococcus aureus (ST398) in Dutch hospitals. Clin Microbiol Infect, 17(2), 316-319.
Waters, A. E., Contente-Cuomo, T., Buchhagen, J., Liu, C. M., Watson, L., Pearce, K., Foster, J. T., Bowers, J., Driebe, E. M., Engelthaler, D. M., Keim, P. S. & Price, L. B. (2011). Multidrug-Resistant Staphylococcus aureus in US Meat and Poultry. Clinical Infectious Diseases, 52(10), 1227-1230.
Webb, G. F., Horn, M. A., D'Agata, E. M., Moellering, R. C. & Ruan, S. (2009). Competition of hospital-acquired and community-acquired methicillin-resistant Staphylococcus aureus strains in hospitals. J Biol Dyn, 48(271-284.
Weese, J. S., Gow, S. P., Friendship, R., Booker, C. & Reid-Smith, R. (2009). Methicillin-resistant Staphylococcus aureus (MRSA) surveillance in slaughter-age pigs and feedlot cattle. ASM-ESCMID Conference on MRSA in Animals: Veterinary and Public Health Implications. London, UK.
Weese, J. S., Rousseau, J., Deckert, A., Gow, S. & Reid-Smith, R. (2011). Clostridium difficile and methicillin-resistant Staphylococcus aureus shedding by slaughter-age pigs. BMC Veterinary Research, 7(1), 41.
Wulf, M., Markestein, A., van der Linden, F., Voss, A., Klaassen, C. & Verduin, C. (2007). First outbreak of methicillin-resistant Staphylococcus aureus ST398 in a Dutch hospital, June 2007. EuroSurveillance, 13(9), 8051.

Part 3

Predictive and Causal Analytics

Chapter 7

Attributive Causal Modeling: Quantifying Human Health Risks Caused by Toxoplasmosis from Open System Production of Swine

This is the first of two chapters that apply predictive analytics to two very different risk prediction problems. As in the previous two chapters, the challenge in this one is to estimate human health risks from a pathogen in swine using a combination of plausible conservative estimates of relevant risk factors and probabilistic simulation. However, our focus now shifts to predicting how risks would change if some fraction of swine were shifted from totally confined production systems to more humane open systems. Predicting how interventions change risk requires a causal model, as discussed in Chapter 1. As in Chapters 5 and 6, a simple product-of-factors framework is again suitable (see equation 7.5). Instead of the terms describing propagation of changes along successive links in a causal chain, with the change in the quantity at each step being equal to a sensitivity or slope factor times the change in its predecessor, many of the factors in this chapter are estimated attribution fractions. These describe the fraction of relevant deaths or illnesses per year in the population due to (i.e., attributed to) and caused by infection with a foodborne pathogen; the fraction of them that are attributed specifically to pork consumption, and so forth. Unlike the attributable risk estimates or attributable fractions criticized in Chapter 2, which were derived purely from statistical associations, in this application the causal agent of disease, T. Gondii, is known and can be measured. Predictions for effects of interventions are therefore grounded in causal attribution calculations that can be compared to available data on prevalence and infectivity of the relevant causal agent. Chapter 8 will then turn to a pure prediction problem: how well the entries in one column in a table (indicating in vivo carcinogenicity of chemicals, or lack of it, in rodents) can be predicted from entries in other columns, representing results of relatively inexpensive high-throughput screening (HTS) assays. No causal model is required for this task: predictive analytics algorithms alone suffice.

For readers who wish to skip ahead, the main points of this chapter are as follows. Open livestock production systems, including free-range and organic livestock systems, seek to improve the welfare of animals by letting them roam in unconfined spaces. This increases their exposure to potentially harmful micro-organisms, including T. gondii. When transmitted through the food chain, T. gondii threatens human health, especially in unborn children of women infected during pregnancy, as well as the lives of patients with compromised immune systems. By contrast, conventional total confinement production systems can now keep this human health risk at or near zero. The probabilistic risk simulation model developed in the rest of this chapter quantifies the trade-off between greater use of open swine production systems and increased cases of toxoplasmosis in humans. It predicts that every 1,804 pigs shifted from conventional total confinement to open production (95% confidence interval 747-9,520) would cause the loss of one additional human quality-adjusted life year (QALY), and that increasing the fraction of U.S. swine raised in open/free range operations by 0.1% (approx. 65,000 pigs) would cause a loss of approximately 36 human QALYs per year, including between 1 and 2 extra adult deaths per year. Methods of causal analytics are valuable largely because they can quantify such tradeoffs and answer what-if questions about how human health risks would change for different interventions, such as if different fraction of pigs were shifted to open production systems. This tells risk managers and policy-makers what they need to know to make decisions that are well-informed about trade-offs and about the probable consequences of different choices.

Dostları ilə paylaş:
1   ...   32   33   34   35   36   37   38   39   ...   57

Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur © 2017
rəhbərliyinə müraciət

    Ana səhifə