Instructions to authors for the preparation of manuscripts



Yüklə 357,6 Kb.
Pdf görüntüsü
səhifə2/6
tarix14.05.2023
ölçüsü357,6 Kb.
#110195
1   2   3   4   5   6
DataLifecycleManagementinSmartBuildingusingWirelessSensorsNetworks

“communicating precast concrete”
which could store 
database information directly into its own structure. This 
paradigm is developed through thousands of micro-sensor 
nodes uniformly integrated in the concrete. Each node could 
communicate wirelessly with others inside the concrete. 
Thus, the nodes could then construct a Wireless Sensor 
Network (WSN) inside the building. Unlike RFID, the 
operator could connect to any node in the concrete and 
store/read all the information in the building through multi-
hops routing protocol of WSN. 
For this issue, new data storage and data retrieval protocols 
have recently been developed, called USEE (Mekki et al., 
2016a) (Mekki et al., 2016b) and RaWPG (Mekki et al., 
2016c) respectively. USEE guarantees that each data is 
uniformly replicated throughout the WSN inside the concrete. 
Thus, information could be read in all parts of the building. 
USEE is based on three strategies: counter-based flooding to 
forward messages to all nodes in the concrete, message 
header field (called 
NS
) which controls the replication rate in 
each node’s neighbourhood (i.e. for increasing the storage 
capabilities of WSN), and finally probabilistic storage (i.e. 
the data is stored with probability P). 
To extract and read the stored data, RaWPG is used. RaWPG 
is based on Random Walk (RW). The RW (Lima and Barros, 
2007) empowers nodes with the ability to efficiently forward 
requests hop by hop which only rely on neighbourhood 
information. RaWPG empowers RW by adding Pull Gossip 
(PG) to query the neighbours in each hop and to increase the 
number of covered nodes during the retrieval process. A 
mechanism called “farthest neighbours selection” and a link 
cost function are added to RaWPG. Only the farthest and 
most powerful neighbour is selected as next hop for 
improving the reliability of the original random walk process. 
Moreover, RaWPG uses a TTL (Time-To-Live) counter 
which fixes the maximal number of hops for data retrieval 
path. TTL is decremented in each hop. The retrieval process 
stop when the data is found or the TTL becomes zero. 
In this paper, USEE and RaWPG are used for data 
management in WSN during all the precast concrete 
lifecycle. Indeed, the instrumentation of the precast is 
presented. The performances of these protocols are then 
evaluated based on the case study of the precast concrete 
lifecycle management. 
In the rest of this paper, the lifecycle of precast concrete is 
firstly studied. Second, the new paradigm of communicating 
precast concrete using micro-sensor networks is presented. 
Finally, the performance of USEE and RaWPG are discussed, 
based on the case study of the precast concrete lifecycle. 
2. PRECAST CONCRETE LIFECYCLE 
Precast concrete products are fabricated in a precast 
manufacturing plant and conveyed to a work site where they 
are erected and assembled. Precast offers economies of scale 
and manufacturing in a controlled environment that makes it 
economical to achieve high levels of quality control. 
The instrumentation of the precast concrete follows physical 
requirements (measurements of temperature, humidity, crack 
detection, etc.). Moreover, in this paper, the precast must be 
able of storing information during its lifecycle. It is therefore 
necessary to define the lifecycle of the precast concrete, and 
to identify the necessary information for the different actors. 
This information can be transmitted by actors, or produced by 
the concrete itself through sensors. The precast concrete 
lifecycle is conventionally composed in three phases as 
shown in figure 1: Beginning Of Life (BOL), Middle Of Life 
(MOL), and End Of Life (EOL). 
Fig. 1. Precast concrete lifecycle.
2.1. Beginning Of Life 
Beginning Of Life (BOL) is the first stage of a precast 
concrete’s existence. BOL includes the initial design of the 
precast, its fabrication, testing and initial marketing. The 
beginning stage finishes when the product is released to the 
building constructor as shown in figure 1. A product can fail 
at any point through the lifecycle stages. If the precast 
concrete is determined not to be feasible during BOL, it is 
unlikely to reach the end of that stage. In (Albin, 2014), the 
BOL duration is estimated from 1 to 2 years.
2.2. Middle Of Life 
The Middle Of Life (MOL) stage is the longest one for 
precast concrete. During MOL, a precast becomes established 
in the final building. Its eventual decline ultimately leads to 
the final end of life (EOL) stage. The success of the MOL 
stage is largely determined by BOL decisions. During the 
MOL, the integrated electronic components sense the internal 
ambient values of the concrete. These values provide useful 
way for preventive maintenance. In (Albin, 2014), the MOL 


duration is estimated for at least 10 years. This period 
corresponds to the classic 10-year building warranty (Ong, 
1997). 
2.3. End Of Life 
The End Of Life (EOL) is the final stage of the precast 
concrete existence. The building is dismantled and all the 
precast concretes are transported to recycler for reuse
renovation, or recycling. In (Albin, 2014), the EOL duration 
is estimated from 1 to 2 years. 
2.4. Synthesis 
In (Albin, 2014), a previous study on the traceability of 
concrete products, conducted with the CERIB company 
(www.cerib.com) in collaboration with the “Research Centre 
for Automatic Control of Nancy”, finely studied BOL, MOL, 
and EOL phases and tried to estimate the quantity of data, the 
number of reading/writing operations and the read/write 
delay that should be handled by the communicating precast 
concrete, all along its lifecycle. Table 1 details the values that 
should be fulfilled by the communication precast concrete. 
The next section details how the instrumentation of the 
communicating concrete should be performed, and the last 
one presents the simulation results obtained for such 
instrumented concrete. These results should allow the respect 
of the requirements below.
Table 1. Data lifecycle overview of precast concrete (Albin, 2014). 

Yüklə 357,6 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə