Instructions to authors for the preparation of manuscripts



Yüklə 357,6 Kb.
Pdf görüntüsü
səhifə1/6
tarix14.05.2023
ölçüsü357,6 Kb.
#110195
  1   2   3   4   5   6
DataLifecycleManagementinSmartBuildingusingWirelessSensorsNetworks



See discussions, stats, and author profiles for this publication at: 
https://www.researchgate.net/publication/318724975
Data Lifecycle Management in Smart Building using Wireless Sensors
Networks
Conference Paper
· July 2017
CITATIONS
0
READS
337
4 authors:
Some of the authors of this publication are also working on these related projects:
PhD study
 
View project
GENIAL: GrEen NetworkIng And cLoud computing
 
View project
Kais Mekki
University of Lorraine
30
PUBLICATIONS
1,458
CITATIONS
SEE PROFILE
William J E Derigent
University of Lorraine
117
PUBLICATIONS
1,049
CITATIONS
SEE PROFILE
Eric Rondeau
University of Lorraine
221
PUBLICATIONS
1,554
CITATIONS
SEE PROFILE
André Thomas
University of Lorraine
200
PUBLICATIONS
1,880
CITATIONS
SEE PROFILE
All content following this page was uploaded by 
Eric Rondeau
 on 27 July 2017.
The user has requested enhancement of the downloaded file.


Data Lifecycle Management in Smart Building using Wireless Sensors Networks 
 
Kais Mekki, William Derigent, Eric Rondeau, André Thomas 

Research Centre for Automatic Control of Nancy, CNRS UMR 7039, Campus Sciences, BP 70239,
Vandoeuvre-lès-Nancy Cedex, 54506, France.
{kais.mekki, william.derigent, eric.rondeau, andre.thomas}@univ-lorraine.fr 
Abstract:
A new area is coming with communicating materials able to provide diverse functionalities to 
users all along the product lifecycle, during the design, manufacturing, use and dismantling phases. These 
materials can track their own evolution all along the product lifetime, gather helpful information and thus 
allow information continuum at all time and everywhere. Usually, these functionalities are fulfilled via 
the integration of specific electronic components into the material (wireless sensors nodes, RFID tags). 
The present paper forms part of this framework in considering that thousands of micro-sensor nodes are 
integrated into a precast concrete. Data management in the integrated sensor nodes requires Wireless 
Sensor Network (WSN) protocols development. We recently developed a data storage protocol, called 
USEE, for communicating materials. To extract this information, we recently developed also a data 
retrieval protocol, called RaWPG. In this paper, the performances of these protocols are evaluated on the 
case study of the precast concrete lifecycle management.
Keywords:
Lifecycle Management, Smart Building, Wireless Sensors Networks, Data Storage/Retrieval. 

1. INTRODUCTION 
Concrete’s versatility, durability, and economy have made it 
the world’s most used construction material. The concrete 
construction companies mainly follow two strategies: i) Local 
concrete fabrication: the concrete is produced on construction 
site via formwork, the site is delivered only in raw material 
(granula, cement, adjuvant, etc.) and scrap. ii) Precast 
concrete fabrication: all construction elements (beams, floors, 
bearing walls, pillars, etc.) are factory away from the site and 
brought to the site to be implemented quickly. 
For reasons of cost and time, the choice is take up mostly 
toward the precast concrete. Indeed, as it was described in 
one of the four roles of construction management (Vrijhoef, 
2000): We must transfer the activities of the earlier building 
site in the chain. These avoid the climate change in the site 
and conduct a number of parallel operations. With precast, it 
is possible to improve the construction site in place, time and 
quality. Actually as example, the United States uses about 
260 million cubic meters of precast concrete each year. It is 
used in highways, streets, parking lots, parking garages, 
bridges, high-rise buildings, dams, homes, floors, sidewalks, 
driveways, and many other applications (Kosmatka et al., 
2003). 
In recent years, a new research area has appeared for 
improving precast concrete in logistic chain, traceability and 
security using RFID and sensor nodes technology. In 2007, 
BizzDev company (www.bizzdev.com) designed a system 
composed of two parts: a temperature sensors node is directly 
embedded in the precast and RFID tag in its surface. The 
concrete is therefore able to deliver its temperature 
continuously over time for supervising application. Also, 
CERIB company (www.cerib.com) on collaboration with the 
“Research Centre for Automatic Control of Nancy” uses 
RFID in the concrete for traceability in the supply chain 
(Albin, 2014): concrete beams were instrumented by 
integrating two RFID tags on each end. Then, CE 
information has been stored in the memory of these tags, 
increasing the chances that such information is not lost and 
still available throughout the supply chain. 
However, the idea used in these two examples consists in 
integrating sensor nodes and RFID tags in some part of the 
precast concrete. This could lead to two problems: i) If the 
precast exceeds the human scale. It is common to find some 
buildings beams or concrete slabs of tens meters (even a 
hundred meters). It is then difficult for the operator to 
systematically go through all the building (over 100 meters 
for example) to identify its characteristics or by searching for 
the tags containing the information. ii) When the precast 
concrete is used and installed inside the building, it is 
difficult to localize and access to the RFID tags inside the 
precast. iii) The RFID technologies are limited in memory, 
thus using one or two tags could not allow large information 
storage. 
For this reason, another applications aim to fully integrate 
RFID tags in precast concrete to allow accessing information 
from each part of building. In (Kalansuriya et al., 2013), the 
RFID tags are placed uniformly in the surface of the precast 
to take a first step towards automatic detection of cracks. The 
cracks are detected when some tags are damaged. In 
(Lafarge, 2013), Lafarge company (www.lafarge.com) 
integrated RFID tags directly into the concrete for traceability 
application. The RFID tags are disseminated in all the 
building concrete at number of 4 or 5 tags every 2 m
3
on 


average. The ID of tags could then be readied in each part of 
the building. Using this ID, the operators could access to all 
the needed information about the concrete (e.g. constructor, 
date, technical characteristic, etc.) through an external 
associated database.
The nature of both previous applications is limited. It is a 
simple identification of RFID tags and a consultation of 
concrete information from an external database. 
In this paper, we define new services for a potential 

Yüklə 357,6 Kb.

Dostları ilə paylaş:
  1   2   3   4   5   6




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə