Microsoft Word WendiThesis docx



Yüklə 284,05 Kb.
Pdf görüntüsü
səhifə11/11
tarix02.03.2018
ölçüsü284,05 Kb.
#29417
1   2   3   4   5   6   7   8   9   10   11

 

41

Weight gain 

The weight of samples before and after the rust process was recorded and subtracted 

by the original weight to obtain the rust gain during the rust forming step. Weight 

increased when time increased, shown in Figure 10. The thickness of the rust was 

calculated by equation 2.   



A

m

Thickness



                      (2) 

Where  m is the weight gain after rust (g), 

 



is the density of the rust, A is the 

surface area (cm

2

).The thickness of the rust vs. Corrosion time is shown in Figure 11.   



 

The weight after nitriding was also measured. The weight gain after nitriding was 

observed to decrease as the rust layer becomes thicker, as shown in Figure 12. The 

blue diamond represents the weight difference between rusted sample and nitrided 

sample. Compared to 0.0024 - 0.0034 mg/cm

2

 weight gain for other rusted samples, 



only 0.0001 mg/cm

2

 of nitrogen diffused into the 7 days rust sample. Because the rust 



layer prevents the nitrogen absorption, less nitrogen was diffused into sample when 

the rust layer thickness increased. The green triangle in Figure 12 shows the weight 

gain between as received sample and nitrided sample, which got the same conclusion: 

less nitrogen is diffused into sample when the rust layer thickness is increased. After 

cleaning, the weight gain varies in a small range, from 0.0039 - 0.0041 mg/cm

2



except for the sample in 4 days rust set. The rust layer has been removed effectively 

by the acid cleaner.   




 

42

 



Figure 10 Average weight gain of rust sample due to rust vs. time curve. 

 

 



Figure 11 The thickness of the rust vs. corrosion time 

 

 



0

0.5


1

1.5


2

2.5


3

3.5


4

4.5


2 days Rust

4 days Rust

7 days Rust

Th

ic

kn

es

s  

(um

)

Corrosion Time

C

NC




 

43

 



Figure 12 Average weight gain/cm

2

 of rust sample after nitriding vs. corrosion time. 



 

 

Hardness 

Surface hardness vs. corrosion time 

HR

c



 was measured and plotted with corrosion time, which has been shown in Figure 

13. The hardness of samples is between 55 and 57. The non-cleaned samples have 

lower hardness when compared to clean samples.   

0

0.0005



0.001

0.0015


0.002

0.0025


0.003

0.0035


0.004

0.0045


0

2

4



6

8

W



e

igh



ga

in

/S

u

rfa

ce

 ar

ea

(g

/c

m

2

)

Corrosion Time

NC‐R


C

NC‐A


As‐polished


 

44

 



Figure 13 Surface hardness vs. corrosion time. 

 

Cross-section hardness vs. corrosion time   

The Vickers hardness test was used in testing the cross-section micro hardness. The 

samples were cut, polished with 800 grit sand paper and then a 200gf load and 15s 

loading time was used in Shimadzu HMV-2000 Micro Hardness Tester. The 

measurements started at 100µm depth from the edge, and an increase of 100µm per 

measurement was taken at 100-1000µm depth, 200µm per measurement was taken at 

1000µm-2000µm. Figure 14 shows the diamond shape made by the indenter with a 

square-based pyramid and an angle of 136° between opposite faces. 



 

45

 



Figure 14 The optical image of the diamond shape holes made by the indenter under 

200gf for 15s for Vickers Hardness test. 

 

The results of the Vickers hardness were collected and plotted in Figure 15-17. In the 



case of 2 days rust samples, the hardness variation can be seen clearly from 100 um to 

500 um case depth. For the range from 500 um to 1000 um, there is no significant 

hardness difference for the samples. In Figure 15, the hardness for the non-cleaned 

sample is smaller than the one of cleaned sample and as the polished sample. The 

large difference was found about the 400 um case depth. In the case of 4 days rust 

samples, the hardness variation can also be seen from 100 um to 500 um case depth in 

Figure 16. After the 500 um case depth, there is no significant hardness difference. As 

it can be seen in Figure 17, there is large difference between the non-cleaned sample 

and cleaned sample from the 100 um and 500 um case depth. After the 500 um case 

depth, there is the same situation for the hardness because the depth for the nitrogen 

diffusion layer is about 500 um from the surface of case.   

 

As shown in Table 4, the cross-section hardness of non-cleaned sample is lower than 



cleaned sample. The total and effective case depths data, given in Table 4, were 

obtained from the micro hardness data (to 420HV). Comparing data from the Figure 

15-17 and Table 4, the data clearly suggests that nitriding the parts of the same steel 

grade in the same workload, and therefore, the same nitriding process parameters will 

be affected by the rust layer. 



 

46

 



Figure 15 The HV profile for the samples rusted for 2 days 

 



 

47

 



Figure 16 The HV profile for the samples rusted for 4 days 

 



 

48

 



Figure 17 The HV profile for the samples rusted for 7 days 

 

 



 

 

 



 

 

 



 

 



 

49

 



 

Table 4 Case depth based on microhardness measurements. 

 

Case depth for Cleaned sample (um) 



Case depth for Rusted sample (um) 

Rust time 

420HV 

Rust 


time 

420HV 


7days 400 

7days  315 

4days 400 

3days  400 

2day 480 

1day  370 

As-polished 410 

-- 


-- 

 

 

Micrographs 

Figures 18-21 present the photomicrographs of nitralloy-135 steel after nitriding. 

Cleaned and rusted samples both show fine grains in the edge due to the nitriding 

treatment. The same grain boundary condition was observed for all samples. The 

difference of the diffusion layer between cleaned and non-cleaned samples can be 

clearly seen from the Figure 23-25 which are micrographs under magnitude 10 X 

magnification. The same result can also be concluded from Figure 9: the more time 

the sample was corroded, the lower was the flux of total nitrogen. The diffusion layer 

and white layer were identified by red arrows in Figure 18. The thickness slight 

variation of the diffusion layer for each sample can be seen in Figure 22. For each 

non-cleaned sample, the more time the sample was rusted, the lower thickness of the 

diffusion layer the micrograph showed.   



 

 

 



 


 

50

 



 

 

 

(b)  50X 

Figure 18 Photomicrograph of the as-received #135 steel’s edge, etched with 2% nital 

solution. (a) the photomicrograph 10X magnification.    (b) the photomicrograph 50 X 

magnification 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



Case depth

 

White layer



 


 

51

 



 

 

 



(a)    cleaned                                                  (b)    contaminated 

Figure 19 Photomicrograph of the 2 days rust samples, etched with 2% nital solution.   

 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 



 

52

 



 

 

 



 

(a)    cleaned                                                    (b)    contaminated 

Figure 20 Photomicrograph of the 4 days rust samples, etched with 2% nital solution.   

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 



 

53

 



 

 

 



(a)    cleaned                                                    (b)    contaminated 

Figure 21 Photomicrograph of the 7 days rust samples, etched with 2% nital solution.   

 

 

 



Figure 22 The thickness of the diffusion layer for each sample. 

 

 



 

 

 




 

54

 



 

 

 



(a)    cleaned                                                    (b)    contaminated 

Figure 23 Photomicrograph of the 2 days rust samples 10 X, etched with 2% nital 

solution. (a) sample cleaned before nitriding    (b) sample non-cleaned before nitriding 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 


 

55

 



 

 

 



(a)    cleaned                                                    (b)    contaminated 

Figure 24 Photomicrograph of the 4 days rust samples 10 X, etched with 2% nital 

solution. (a) sample cleaned before nitriding    (b) sample non-cleaned before nitriding 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 


 

56

 



 

 

 



(a)    cleaned                                                    (b)    contaminated 

Figure 25 Photomicrograph of the 7 days rust samples 10 X, etched with 2% nital 

solution. (a) sample cleaned before nitriding    (b) sample non-cleaned before nitriding 

 

Figure 26 presents the scanning electron microscopy (SEM) image of Nitralloy-135, 



which shows the white layer and diffusion layer. To identify the type of scales on the 

nitralloy-135, X-ray diffraction (XRD) pattern had been collected by Panalytical Inc 

[13]. The peaks of epsilon-iron nitride (Fe

3

N), and gamma-iron nitride (Fe



4

N) were 


identified as shown in Figure 28 

 



 

57

 



Figure 26 SEM image of nitrided #135 alloy etched by 2% nital. 

 

 



 

 

Figure 28 XRD diffraction pattern of nitralloy-135 surface after gas nitriding 



 

 

0



1000

2000


3000

4000


5000

6000


7000

8000


9000

10000


20

40

60



80

100


Fe

3



(101) 

Fe

4



 (100) 


Fe

3



(111)

Fe

4



 (111) 


Fe

3



(002)

Fe

3



(112) 


Fe

3



(113) 

Fe

4



 (200) 


Fe

4



 (220) 


 

58

Reference

 

1.

 



D. MacKenzie, FASM, M. Fretz and D. Schuster, Cleaning for heat treating, Heat 

Treating Progress, October 2008 

2.

 

B. Haase, M. Stiles and J. Dong, Surface Oxidation of Steels at Low Oxygen 



Pressures and Elevated Temperature: Impact on Gas Nitriding. Surface 

Engineering, 2000, 16(3):p263-268 

3.

 

B.Haase, J.Dong, O.Irretier, and K.Bauckhage “Influence of steel surface 



composition on Gas nitriding mechanism”, Surface engineering, vol 13, p 

251-256, 1997 

4.

 

F. Hoffmann and P. Mayer: in ASM Handbook, Vol.3, p122-123, Materials Park, 



OH, 1992 

5.

 



J. Darbellay, Gas nitriding: An Industrial Perspective, MSE 701 – March 22,2006 

6.

 



K. Jack, Nitriding, Proceedings of the Metal Society, Heat Treatment, London, 

1973 


7.

 

B. Haase, J. Dong and J. Heinlein. Surface oxidation of steels at low pressures 



and elevated temperature, Impact on Gas nitriding, 2000, p263-268 

8.

 



Product data, Nitriding steel #135, Tool steel and Specialty Alloy Selector, 

website  

9.

 

Product data, Castrol Clearedgeâ 6519, High Performance Cutting and Grinding 



FluidCastrol, website 

10.


 

Product data, Houghton- Rust Veto 4225, Houghton, website.   

11.

 

Metal supply online, 8620 alloy steel material property data sheet, Metal supply 



online datasheet 

12.


 

Private community: Bodycote Thermal Processing, Worcester, MA, 01609 

13.

 

Private community: Panalytical Inc, Westborough, MA, 01581 



 

 


 

59

Chapter 4   



Summary  

Gas nitriding is a complex process which leads generally to increased surface 

hardness, and improved wear behavior and corrosion resistance. One problem is that 

the process is not yet fully understood, especially the influences of surface 

contamination. The experimental results presented indicate that there is a strong 

influence of surface contaminants on the rate of nitrogen acceptance. The effects of 

rust layer on the hardness were experimentally investigated. The results are 

summarized as below: 

 

Nitrogen flux is smaller due to rust layer for the heavily rusted sample. 



 

The surface hardness (R



c

) didn’t show a significant difference between the 

heavily rusted sample and clean sample. The hardness of samples nitrided at 

526


o

C and 549

o

C for 50 hrs is between 55 and 57 HR



c

 . 


 

Acid cleaning can remove the rust layer effectively. Hydrochloric acid cleaner: 



50 vol % HCl is used. Rinsing completely in distilled water is necessary to 

remove the cleaner residue. 

 

 

 



 

 

 



 

 

 




 

60

Appendix 



CHTE Cleaning Project Questionnaire Result 

1.

 



What type of surface contaminants do you find on your steel work piece 

before heat treatment (from upstream operations)? 



 

*Other: Cutting fluids, Lubricants, Soap, Drawing compounds, Fine blanking 

oils, NaOH, KOH, Borates, and Silicates Salt. 

**What must be removed: Hard water, NaOH, KOH, Borates, Silicates Salt, 

Oil, Chips, Scale from forging? 

2. What type of surface contaminants is on your steel work piece after 

annealing/normalizing/carburizing? 

 

*Other: quench oil, 



0

1

2



3

4

5



Dust

Oxides


Carbon deposits

Chips


Other


 

61

 



3. What type of surface contaminants is on your steel work piece after 

quenching/cooling? 

 

*Other: Rust Preventive, Boron. 



**What must be removed: Salt, Oil, Chips, Carbon deposits, [4] 

According to the survey result, the most common kinds of surface contamination 

before the heat treating process are oil, rust preventive oil and cleaner residue. After 

annealing, normalizing or carburizing, carbon deposits are the most important surface 



contaminants. The oil and carbon deposits are left after quenching. 

Yüklə 284,05 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10   11




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə