Proceedings of the International rilem conference Materials, Systems and Structures in Civil Engineering 2016



Yüklə 8,6 Mb.
Pdf görüntüsü
səhifə175/175
tarix19.07.2018
ölçüsü8,6 Mb.
#56746
1   ...   167   168   169   170   171   172   173   174   175

402

International RILEM Conference on Materials, Systems and Structures in Civil Engineering 

Conference segment on Service Life of Cement-Based Materials and Structures 

22-24 August 2016, Technical University of Denmark, Lyngby, Denmark 

 

paste due to silica fume addition increases self-desiccation and thus shrinkage [8], [33]-[35]. 



In terms of autogenous shrinkage prediction, the Japan Concrete Institute underestimated the 

autogenous shrinkage of both the Ref and SF mixtures, taking into account water/binder ratio 

and considering ordinary Portland cement as the binder. 

When 20% and 30% of sand was replaced with ECat occurred a reduction of about 32% and 

38%, respectively, in autogenous shrinkage of the mortars compared with that of SF mixture . 

Lower reductions were found for 10% of sand replacement by ECat (see Figure 5).  But a 

strong increase of shrinkage deformations was observed for 40% sand replacement with ECat. 

This might be due to the strong reduction of aggregate, it means sand which was replaced by 

ECat, phase volume or increase of binder phase. This might be due to the strong reduction in 

the inert materials present in the aggregates and, concomitantly, to a significant increase in the 

reactive materials present both in the binder phase and the ECat incorporated as a surrogate 

for sand. In addition, one can expect that after a given replacement level the dispersion of 

ECat particles in the matrix becomes less uniform and its effect as internal water reservoirs to 

mitigate autogenous shrinkage is less efficient. 

 

 

3. Conclusions 



 

This paper studied the efficiency of ECat for mitigating the autogenous shrinkage of UHPC, 

when used as a partial surrogate for sand. The results revealed that ECat particles act as 

internal reservoirs in UHPC matrix, feeding the capillary pores or a source of curing water to 

the paste volume in its vicinity. Among the replacement levels studied, 20% and 30% sand 

replacement by ECat was found to perform better in terms of autogenous shrinkage reduction 

without impairing the workability, and even improving the compressive strength at both the 7 

and 28 days. Thus, further improvements of UHPC mixtures can be envisaged by replacing, 

simultaneously, part of the binder (cement+SF) and part of the fine aggregate by ECat, 

without impairing other properties like workability, compressive strength and durability. It 

should be mentioned also that a decrease of shrinkage deformations is also expected after the 

inclusion of fibres. Finally, the incorporation of ECat in UHPFRC saves landfill usage, 

turning an otherwise polluting waste into a value-added by-product.  

 

 



Acknowledgement 

 

The first author wishes to thank the financial support of the Portuguese Foundation for 



Science and Technology (FCT) through the PhD scholarship PD/BD/113636/2015, attributed 

within the Doctoral Program in Eco-Efficient Construction and Rehabilitation (EcoCoRe). 

The authors are also grateful to Dr. Eng. Lino Maia and CONSTRUCT. Acknowledgements 

are also due to Secil, GALP and Sika for supplying, respectively, cement, ECat and 

admixtures. 

 

 



References 

 

[1] 



R. Neves, C. Vicente, A. Castela, and M. F. Montemor, “Durability performance of 


403

International RILEM Conference on Materials, Systems and Structures in Civil Engineering 

Conference segment on Service Life of Cement-Based Materials and Structures 

22-24 August 2016, Technical University of Denmark, Lyngby, Denmark 

 

concrete incorporating spent fluid cracking catalyst,” Cem. Concr. Compos., vol. 55, 



pp. 308–314, Jan. 2015. 

[2]  W. J. W. Dale P. Bentz, “Internal Curing: A 2010 State-of-theArt Review,” USA, 

2011. 

[3]  D. P. Bentz and O. M. Jensen, “Mitigation strategies for autogenous shrinkage 



cracking,” Cem. Concr. Compos., vol. 26, no. 6, pp. 677–685, Aug. 2004. 

[4]  O. M. Jensen and P. F. Hansen, “Water-entrained cement-based materials,” Cem. 



Concr. Res., vol. 32, no. 6, pp. 973–978, 2002. 

[5]  G. Ye, N. Van Tuan, and H. Huang, “Rice Hush Ash as smart material to mitigate 

autogenous shrinkage in high ( ultra-high ) performance concrete,” in Third 

International Conference on Sustainable Construction Materials and Technologies 

(SCMT2013), At Kyoto, Japan, 2013. 

[6] 


A. M. Soliman and M. L. Nehdi, “Effect of drying conditions on autogenous shrinkage 

in ultra-high performance concrete at early-age,” Mat. Str., vol. 44, pp. 879–899, 2011. 

[7] 

K. Kovler and O. M. Jensen, “Report rep041 : Internal Curing of Concrete - State-of-



the-Art” Report of RILEM Technical Committee 196-ICC, 2007. 

[8]  Viet-Thien-An Van, Christiane Rößler, Danh-Dai Bui, and Horst-Michael Ludwig, 

“Rice husk ash as both pozzolanic admixture and internal curing agent in ultra-high 

performance concrete,” Cem. Concr. Compos., vol. 53, pp. 270–278, 2014. 

[9]  D. P. Bentz, M. R. Geiker, and K. K. Hansen, “Shrinkage-reducing admixtures and 

early-age desiccation in cement pastes and mortars,” Cem. Concr. Res., vol. 31, no. 7, 

pp. 1075–1085, Jul. 2001. 

[10]  K. J. Folliard and N. S. Berke, “Properties of high-performance concrete containing 

shrinkage-reducing admixture,” Cem. Concr. Res., vol. 27, no. 9, pp. 1357–1364, 1997. 

[11]  H.X.D. Lee, H.S.Wong and N.R. Buenfeld, “Self-sealing of cracks in concrete using 

superabsorbent polymers,” Cem. Concr. Res., vol. 79, pp. 194–208, Oct. 2016. 

[12]  N. T. Castellanos and J. T. Agredo, “Using spent fluid catalytic cracking (FCC) 

catalyst as pozzolanic addition - a review,” Ing. E Inv., vol. 30, no. 2, pp. 35–42, 2010. 

[13]  F. Ferella, V. Innocenzi, and F. Maggiore, “Oil refining spent catalysts: A review of 

possible recycling technologies,” Res. Cons. Recycl., vol. 108, pp. 10–20, Mar. 2016. 

[14] 


“Key facts & figures | CEMBUREAU.” [Online]. Available: 

http://www.cembureau.be/about-cement/key-facts-figures. [Accessed: 31-Mar-2016]. 

[15]  L. S. Martínez, “Nuevas aportaciones en el desarrollo de materiales cementantes con 

residuo de Catalizador de Craqueo Catalítico Usado (FCC),” UNIVERSIDAD 

POLITECNICA DE VALENCIA, 2007. 

[16]  Y.-S. Tseng, C.-L. Huang, and K.-C. Hsu, “The pozzolanic activity of a calcined waste 

FCC catalyst and its effect on the compressive strength of cementitious materials,” 

Cem. Concr. Res., vol. 35, no. 4, pp. 782–787, 2005. 

[17]  B. Pacewska, M. Bukowska, I. Wili ska, and M. Swat, “Modification of the properties 

of concrete by a new pozzolan - A waste catalyst from the catalytic process in a 

fluidized bed,” Cem. Concr. Res., vol. 32, pp. 145–152, 2002. 

[18]  B. Pacewska, I. Wili ska, M. Bukowska, and W. Nocu -Wczelik, “Effect of waste 

aluminosilicate material on cement hydration and properties of cement mortars,” Cem. 



Concr. Res., vol. 32, no. 11, pp. 1823–1830, 2002. 

[19]  J. Payá, J. Monzó, M. V. Borrachero, and S. Velázquez, “Evaluation of the pozzolanic 

activity of fluid catalytic cracking catalyst residue (FC3R). Thermogravimetric analysis 



404

International RILEM Conference on Materials, Systems and Structures in Civil Engineering 

Conference segment on Service Life of Cement-Based Materials and Structures 

22-24 August 2016, Technical University of Denmark, Lyngby, Denmark 

 

studies on FC3R-Portland cement pastes,” Cem. Concr. Res., vol. 33, no. 4, pp. 603–



609, 2003. 

[20]  Sammy Y. N. Chan and X. Ji, “Comparative study of the initial surface absorption and 

chloride diffusion of high performance zeolite, silica fume and PFA concretes,” Cem. 

Concr. Compos., vol. 21, no. 4, pp. 293–300, Aug. 1999. 

[21]  J. June, U. Politecnica, E. Zornoza, P. Garcés, M. V Borrachero, and J. Payá, 

“Durability Properties of Mortars Partially Substituted with Spent Catalytic Cracking 

Catalyst,” 2010. 

[22]  C. Costa and P. Marques, “Low-Carbon Cement with Waste Oil-Cracking Catalyst 

Incorporation,”  2012 IEEE-IAS/PCA 54th Cement Industry Technical Conference

IEEE, San Antonio, USA. 

[23]  Pedro Raposeiro Da Silva and Carla Costa, “Fresh Properties and Compressive 

Strength of self-compacting concrete containing waste fluid catalytic cracking 

catalyst,” in 7th RILEM International Conference on SelfCompacting Concrete and 1st 



RILEM International Conference on Rheology and Processing of Construction 

Materials, 2013. 

[24]  N. Su, H.-Y. Fang, Z.-H. Chen, and F.-S. Liu, “Reuse of waste catalysts from 

petrochemical industries for cement substitution,” Cem. Concr. Res., vol. 30, no. 11, 

pp. 1773–1783, 2000. 

[25]  C. Costa, M. S. Ribeiro, and N. Brito, “Effect of Waste Oil-Cracking Catalyst 

Incorporation on Durability of Mortars,” Mater. Sci. Appl., vol. 5, no. November, pp. 

905–914, 2014. 

[26]  IPQ, “NP EN 196-3. Methods of testing cement - Part 3: Determination of setting times 

and soundness.” 2006. 

[27]  H. Okamura and M. Ouchi, “Self-Compacting Concrete,” J. Adv. Concr. Technol., vol. 

1, no. 1, pp. 5–15, 2003. 

[28]  IPQ, “NP EN 196-1: 2006. Methods of testing cement Part 1: Determination of 

strength.” IPQ, Lisbon, pp. 1–33, 2005. 

[29]  ASTM, “ASTM C 1698-09. Standard Test Method for Autogenous Strain of Cement 

Paste and Mortar,” vol. i, no. C. pp. 1–8, 2013. 

[30]  Japan Society of Civil Engineers, “Recommendations for Design and Construction of 

High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks 

(HPFRCC ),” Concr. Eng. Ser., vol. 82, p. Testing Method 6–10, 2008. 

[31]  K. C. Hsu, Y. S. Tseng, F. F. Ku, and N. Su, “Oil cracking waste catalyst as an active 

pozzolanic material for superplasticized mortars,” Cem. Concr. Res., vol. 31, no. 12, 

pp. 1815–1820, 2001. 

[32]  J. Payá, J. Monzó, and M. V. Borrachero, “Physical, chemical and mechanical 

properties of fluid catalytic cracking catalyst residue (FC3R) blended cements,” Cem. 

Concr. Res., vol. 31, pp. 57–61, 2001. 

[33]  K. Habel, “Structural behaviour of elements combining Ultra-High Performance Fibre 

Reinforced Concretes (UHPFRC) and Reinforced Concrete,” 2004. 

[34]  P. F. Jensen, O.Mejlhede; Hansen, “Autogenous deformation and change of the relative 

humidity in silica fume-modified cement paste,” ACI Mater. J., vol. 93, pp. 539–543, 

1996. 


[35]  P. K. Mehta and P. J. M. Monteiro, Concrete: microstructure, properties, and 

materials. 2006. 


405

International RILEM Conference on Materials, Systems and Structures in Civil Engineering 

Conference segment on Service Life of Cement-Based Materials and Structures 

22-24 August 2016, Technical University of Denmark, Lyngby, Denmark 

 

 

 



 

Author Index 

 

Kamilia Abahri 385 



Lucas Adelaide 95 

Yilmaz Akkaya 453 

Marcos G. Alberti 287 

Hartmann Alberts 39 

Ouali Amiri 221 

Ali Amiri 493 

Armen Amirkhanian 211 

José J. Anaya 755 

Sofia Aparicio 755 

Paul Archbold 513 

Miguel Azenha XIII 297 

651 


Jesus Miguel Bairan 145 

Diana Bajare 435 

Luis Baquerizo 463 

Zeynep Basaran Bundur 493 

Muhammed Basheer 307 

Farid Benboudjema 59 325 

675 715 725 

Ahmed Zakarya 

Bendimerad 407 

Rachid Bennacer 385 

Shashank Bishnoi 573 

Dubravka Bjegovi  553 

Edgar Bohner 165 

Stéphanie Bonnet 533 

Elia Boonen 735 

Xavier Bourbon 95 425  

Véronique Bouteiller 95 

Rok Bregar 503 

Matthieu Briffaut 125 

Eric Brouard 483 

Laurie Buffo-Lacarrière 425 

Vesna Bulatovi  523 

Girts Bumanis 435 

Paulo Cachim 195 

Yin Cao 579 695  

Jérôme Carette 377 385  

Pietro Carrara 543 

Thierry Chaussadent 95 

Jiayi Chen 745 

Özlem Cizer 317 573  

Utkan Corbacioglu 453 

Manuel Corbin 79 

Pedro Costa 195 

Carla Costa 395 

Alex Coyle 211 

Maria D. Crespo 145 

Wilson Ricardo Leal Da 

Silva 463 

Aveline Darquennes 325 

385 725 


Gheorghe-Alexandru David 

503 


Nele De Belie 177 

José de Frutos 621 

Laura De Lorenzis 543 

Caroline De Sa 325 

Geert De Schutter 203 

Ákos Debreczeni 415 

Arnaud Delaplace 483 

Brice Delsaute 407 

Fuat Demir 443 

Dries Devisscher 177 

Joris Dockx 317 

Hua Dong 355 

Wei Dong 685 

Peter Dubruel 177 

Cyrille Dunant 345 

Youssef El Bitouri 425 

Mats Emborg 609 

Alejandro Enfedaque 287 

Oskar Esping 155 

Rui Faria 641 

Emanuel Felisberto 641 

Ignasi Fernandez Perez 231 

Denise Ferreira 145 

Miguel Ferreira 165 

John Flattery 513 

José Vicente Fuente 755 

Ivan Gabrijel XIII 553 705  

Erez Gal 789 

Jaime C. Galvez 287 

Peng Gao 789 

Ricardo García-Rovés 621 

Paolo Gardoni 631 

Fabrice Gatuingt 675 

Carlos Gil Berrocal 231 

Zehra Canan Girgin 365 

Margarita González 755 

Jorge Gosalbez 755 

Joan Govaerts 259 

José Granja 297 

Viktor Gribniak 279 

Eugenijus Gudonis 279 

Alex-Walter Gutsch 39 

Karolina Hajkova 463 

Petr Havlasek 463 

Hans Hedlund 609 

Peter Heinrich 249 

Christian Hellmich 665 

Wibke Hermerschmidt 39 

715  

Adrien Hilaire 345 



Volker Hirthammer 115 

Douglas Hooton 105 

Liesbeth Horckmans 317 

Muhammad Irfan-Ul-

Hassan 665 

Diederik Jacques 203 259  

Michaela Jakubickova 735 

Ronaldas Jakubovskis 279 

Ole Mejlhede Jensen XIII 

XV 


Shiju Joseph 573 

Xavier Jourdain 675 

Joachim Juhart 503 

Mantas Juknys 279 

Sakdirat Kaewunruen 135 

Gintaris Kaklauskas 269 

279  

Zainab Kammouna 125 



Terje Kanstad XIII 589 

Gediminas Kastiukas 685 

Said Kenai 777 

Egemen Kesler 453 

Vitaliy Kindrachuk 115 

Gunrid Kjellmark 589 

Anja Estensen Klausen 589 

Agnieszka Knoppik-Wróbel 

49 

Eduardus Koenders 599 



Pavel Krivenko 1 11  

Markus Krüger 503 

Josip Kujek 553 

Markus Königsberger 665 

Serhii Lakusta 11 

Oles Lastivka 11 

Martin Laube 39 

Kefei Li 69 




406

International RILEM Conference on Materials, Systems and Structures in Civil Engineering 

Conference segment on Service Life of Cement-Based Materials and Structures 

22-24 August 2016, Technical University of Denmark, Lyngby, Denmark 

 

 

 



 

Quanwang Li 69 

Ming Li 241 

Yi-Gang Li 335 

Juan Li 579 

Anders Lindvall 155 

Xian Liu 745 

Olfa Loukil 95 

Ahmed Loukili 407 

Ivan Luki  523 

Karin Lundgren 231 

Tang Luping 155 307  

Ingemar Löfgren 155 231 

609 


Marie Malbois 325 

Yann Malecot 125 

Mirjana Malešev 523 

Antonio Mari 145 

Enrico Masoero 21 

Benoit Masson 79 

Ana Mafalda Matos 395 

Thomas Matschei 463 

W. John McCarter 307 

Belkacem Menadi 777 

Esperanza Menéndez 621 

Arn Mignon 177 

Shintaro Minoura 135 

André Monteiro 195 

Gábor Mucsi 415 

Cecilie Myklebust Helle 29 

Georges Nahas 385 

Sreejith Nanukuttan 307 599 

651 

Phu Tho Nguyen 221 



Xu-Jing Niu 335 

Sandra Nunes 395 

Ravi A. Patel 203 259  

Gai-Fei Peng 335 

Janez Perko 203 259  

Frantisek Peterka 735 

Bernhard Pichler 665 

Christoph Pohl 115 

Marc Quiertant 95 

Miroslava Radeka 523 

Vlastimir Radonjanin 523 

Frédéric Raguenau 95 

Regimantas Ramanauskas 

269 279  

Alex Remennikov 135 

Encarnación Reyes 287 

Desmond Robinson 599 

Pierre Rossi 765 

Emmanuel Rozière 407 651  

Igor Rudenko 11 

Sergio Ruiz 621 

Samindi Samarakoon 29 

Emre Sancak 443 

Faez Sayahi 609 

Tereza Sazavska 735 

Dirk Schlicke XIII 49 249 

563 651  

Dalibor Sekulic 705 

Alain Sellier 425 

Tristan Senga Kiesse 533 

Marijana Serdar 651 

Mahmoud Shakouri 631 

G Sherzer 789 

Igor Shvab 21 

Vit Smilauer 463 

Ruben Snellings 317 

Adrien Socie 325 

Aleksandr Sokolov 279 

François Soleilhet 675 

Carlos Sousa 641 

Radoslav Sovjak 473 

Robert Spragg 211 

Stéphanie Staquet 377 407 

651 


Jan Sælensminde 29 

Tayfun Altu  Söylev 187 

Olli Saarela 165 

Van Loc Ta 533 

Jean-Louis Tailhan 765 

Robert Teuber 39 

Eckart Thoms 39 

Qian Tian 241 

Thomas Titscher 115 

David Trejo 631 

Laurent Trenty 95 

Gregor Trtnik 651 

Nguyen Viet Tue 563 

Viktor Török 415 

Neven Ukrainczyk 599 

Jörg F. Unger 115 

Koenraad Van Balen 317 

573  


Klaas Van Breugel 203 

Céline Van Bunderen 317 

Sandra Van Vlierberghe 177 

Jos Vandekeybus 317 

Lucie Vandewalle 317 

Mariana Vasylchenko 725 

Anne Ventura 533 

Jolien Vermeulen 177 

Clément Vert 483 

Yujiang Wang 241 

Ling Wang 579 

Zhendi Wang 579 

Ling Wang 695 

Zhendi Wang 695 

Tsutomu Watanabe 135 

Jason Weiss 211 

Walid Yahiaoui 777 

Yan Yao 579 695  

Guang Ye 203 355 745 789  

T. Alper Y k c  453 

Dongdong Zhang 69 

Yi-Lin Zhao 335 

Xiangming Zhou 685 

Semion Zhutovsky 105 

ükrü Özkan 443 

 



Materials, Systems and Structures in Civil Engineering 2016

Service Life of Cement-Based Materials and Structures

Vol. 1

Edited by



Miguel Azenha, Ivan Gabrijel, Terje Kanstad, Dirk Schlicke and Ole Mejlhede Jensen

RILEM Proceedings PRO 109

ISBN Vol. 1: 978-2-35158-170-4

ISBN Vol. 2: 978-2-35158-171-1

ISBN Vol. 1&2: 978-2-35158-172-8

e-ISBN: 978-2-35158-173-5

This volume contains the proceedings of the MSSCE 2016 conference segment on 

“Service Life of Cement-Based Materials and Structures”, which is organized by 

COST Action TU1404 (www.tu1404.eu). This COST Action is entitled: “Towards the 

next generation of standards for service life of cement-based materials and struc-

tures”, dedicated to assist deepening knowledge regarding the service life behav-

iour of cement-based materials and structures. The main purpose of this Action is 

to bring together relevant stakeholders (experimental and numerical researchers, 

standardization offices, manufacturers, designers, contractors, owners and authori-

ties) in order to reflect today’s state of knowledge in new guidelines/recommen-

dations, introduce new products and technologies to the market, and promote in-

ternational and inter-speciality exchange of new information, creating avenues for 

new developments. The COST Action is basically divided in three main workgroups 

targeted to this purpose:

WG1 – Testing of cement-based materials and RRT

+

WG 2 – Modelling and benchmarking



WG 3 – Recommendations and products

Also, two important instruments of the Action are now under way: the Extended 

Round Robin Testing Program (RRT

+

), and the numerical benchmarking. The RRT



is 


currently involving 43 laboratories.

The present conference segment deals with a wide breadth of topics related to the 

service life of concrete, comprising aspects related to the 3 Workgroups mentioned 

above. The conference segment is attended by 80 presenters from university, indus-

try and practice representing more than 30 different countries. All contributions have 

been peer reviewed.

The event “Materials, Systems and Structures in Civil Engineering 2016”, 15-29 Au-

gust 2016, Lyngby, Denmark, is scientifically sponsored by RILEM. The event is host-

ed by the Department of Civil Engineering at the Technical University of Denmark and 

is financially sponsored by a number of independent foundations and organizations.

RILEM Publications S.a.r.l.

157 rue des Blains, F-92220 Bagneux - FRANCE

Tel: +33 1 45 36 10 20 Fax: +33 1 45 36 63 20

E-mail: dg@rilem.net



Yüklə 8,6 Mb.

Dostları ilə paylaş:
1   ...   167   168   169   170   171   172   173   174   175




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə