Proceedings of the International rilem conference Materials, Systems and Structures in Civil Engineering 2016



Yüklə 8,6 Mb.
Pdf görüntüsü
səhifə43/175
tarix19.07.2018
ölçüsü8,6 Mb.
#56746
1   ...   39   40   41   42   43   44   45   46   ...   175

82

International RILEM Conference on Materials, Systems and Structures in Civil Engineering 

Conference segment on Service Life of Cement-Based Materials and Structures 

22-24 August 2016, Technical University of Denmark, Lyngby, Denmark 

 

and shrinkage.



 

In 2021, to predict the behavior under severe accident conditions.

 

This paper is dedicated to the results of the first workshop where 14 teams (over 46 registred 



for the benchmark [Figure 3]) have presented their blind results (only a part of the results is 

presented). 

 

Figure 3: Repartition of the registered participants 



2. Benchmark VERCORS 2015  

2.1 Theme 1: early age 

The topic is the prediction of the gusset behavior at early age, from the pouring to ten month 

(end of construction of the whole containment). The results expected were temperature 

evolution, strains, stresses and cracking patterns. 

 

2.1.1 Temperature evolution 

For the first phase, 11 participants have proposed a temperature evolution in the gusset 

[Figure 4]. A short summary of the results is presented in this paper. 

 

We can note that the temperature values were underestimated during the first 50 hours and 



that the experimental temperature plateau (between 10 and 35 h) was not found 

[Figure 5]

This can be due to a poor evaluation of the heated air temperature around the gusset.  The 



obtaining of the plateau is directly linked to the duration of the air heating around the gusset. 

The thermometer providing us with the heated air temperature around the gusset has 

malfunctioned. Due to this unreliable measurement, new boundary conditions have been 

proposed by EDF to the participants. Participants were free to use any numerical calibration: 

the adjustment should only regard the boundary conditions of the gusset during heating. The 

results were better. 




83

International RILEM Conference on Materials, Systems and Structures in Civil Engineering 

Conference segment on Service Life of Cement-Based Materials and Structures 

22-24 August 2016, Technical University of Denmark, Lyngby, Denmark 

 

 

Figure 4: Position in the gusset of the sensors concerned by the theme 1 



 

 

Figure 5: Preliminary results - Temperature given by participants in the gusset (G1 and F1) 

 

2.1.2 

Evolution of tangential strains in the gusset 

Four teams (Team 25, Team 40, Team 44 and Team 50) have submitted tangential strain 

values in the gusset.  

It shows that almost Teams overestimate the experimental strains for all sensors. The team 50 

gives the best results 

[Figure 6]

 



84

International RILEM Conference on Materials, Systems and Structures in Civil Engineering 

Conference segment on Service Life of Cement-Based Materials and Structures 

22-24 August 2016, Technical University of Denmark, Lyngby, Denmark 

 

 

Figure 6: Tangential strains in the gusset at 4 days after pouring



 

2.1.3 Evolution of stresses in the gusset 

5 participants (Team 21, Team 25, Team 40, Team 44 and Team 50) have given stresses 

values in the gusset, mainly after 4, 12 and 30 days (and 10 months for Teams 21 and 50). No 

experimental measure is available for the stresses.  

Team 40 has provided the evolution of tangential stresses in the gusset during the first days 

after concreting. It shows that the maximum tensile stresses are obtained almost 2 days after 

concreting (> 3MPa in G1 and G2). This means that the cracking occurs almost 2 days after 

the pouring, while the temperature decreases. Team 40 recommends not taking into account 

stresses values after the cracking for early age calculation but only the stresses evolution 

between the pouring and the cracking. In fact, stresses values have no physical meaning when 

cracking occurred. 

At four days after pouring 

[Figure 7]

, 3 participants (Team 21, Team 25 and Team40) have 

tensile stresses in the entire gusset (from 0,4 to 2,7 MPa). For these teams, the lower part of 

the gusset is more tensioned than the upper part. 

The 2 other participants have lower tensile stresses and even a compressive stress, especially 

for Team 44 showing about 3 MPa compressive stress in F1 (and lower compressive stress in 

G1). 

 



85

International RILEM Conference on Materials, Systems and Structures in Civil Engineering 

Conference segment on Service Life of Cement-Based Materials and Structures 

22-24 August 2016, Technical University of Denmark, Lyngby, Denmark 

 

   

Figure 7: Tangential stresses in the gusset at 4 days after pouring



 

2.1.4 Cracks in the gusset 

The tables 

[Table 1&2] 

below give the experimental cracks evolution in the gusset between 

the concreting of the gusset and the end of construction (before pre-stressing). These cracks 

were highlighted during visual inspections of the mock-up, 5, 12 days and 8 months after the 

pouring. All cracks are vertical. The two tables below synthesis the main characteristics of the 

cracks evolution. 

Table 1: Main characteristics of the cracks on the inner face of the gusset

 

Time 



Intrados 

total length in mm  max opening in mm 

spacing in 

mm 

number of 

cracks 

t0 + 5 days 

4990 0,1 

~1200 

18 


t0 + 12 days 

8490 0,2 

~1200 

22 


t0 + 30 days 

wall not accessible 



t0 + 8 months 

no inspection conducted 

 

Table 2: Main characteristics of the cracks on the outer face of the gusset



 

Time 

Extrados 

total length in mm  max opening in mm 

spacing in 

mm 

number of 

cracks 

t0 + 5 days 

6325 <0,1 

~1200 

17 


t0 + 12 days 

9940 0,1 

~1200 

23 


t0 + 30 days 

wall not accessible 



t0 + 8 months 

16000 0,2 

~1200 

30 



Yüklə 8,6 Mb.

Dostları ilə paylaş:
1   ...   39   40   41   42   43   44   45   46   ...   175




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə