Proceedings of the International rilem conference Materials, Systems and Structures in Civil Engineering 2016



Yüklə 8,6 Mb.
Pdf görüntüsü
səhifə53/175
tarix19.07.2018
ölçüsü8,6 Mb.
#56746
1   ...   49   50   51   52   53   54   55   56   ...   175

112

International RILEM Conference on Materials, Systems and Structures in Civil Engineering 

Conference segment on Service Life of Cement-Based Materials and Structures 

22-24 August 2016, Technical University of Denmark, Lyngby, Denmark 

 

 

 



Figure 4: Mass loss of mortars as a function of thermal cycles  

 

 



Figure 5: Mass loss rate of mortars as a function of thermal cycles 

 

It can be seen that suggested exposure conditions combined with mass loss measurements are 



valuable methods for testing the resistance of cementitious materials to PSA. This method 

demonstrated good sensitivity that enabled precise capture of the differences in rate of 

deterioration due to PSA in mortar mixes with a wide range of w/b ratios and two different 



113

International RILEM Conference on Materials, Systems and Structures in Civil Engineering 

Conference segment on Service Life of Cement-Based Materials and Structures 

22-24 August 2016, Technical University of Denmark, Lyngby, Denmark 

 

SCMs.  The results of such testing method can be used for comparison of different mixture 



designs for a construction project. In order to use the results of this type of test method for 

service life prediction, the performance of suggested concrete mixture can be compared to the 

performance of a mixture with known performance from field testing.However, it is 

impossible to mimic all possible real live scenarios of aggressive environmental conditions 

either by laboratory or by field testing. The best approach is to obtain basic properties using 

laboratory testing and use them for service life predictions by means of modeling. Further 

research is needed to extend this testing method to concretes. 

    


 

4. Conclusions 

 

Based on the presented experimental results the following conclusions can be made: 



 

 

The combination of the selected sample size and thermal cycling in 30% sodium sulfate 



solution produced exposure conditions suitable for testing of the resistance to physical 

sulfate salt attack for a wide range of mortar mixture designs. 

 

Mass loss was the most efficient and sensitive method for the evaluation of the extent of 



damage and rate of deterioration during exposure to physical sulfate salt attack. 

 

Further research is needed to extend the suggested testing method to concretes. 



 

 

References 

 

[1]  Mehta, P. and Monteiro, P. J. M., Concrete: Microstructure, Properties, and Materials, 



3rd ed., McGraw-Hill, (2006).  

[2]  Hooton, R., Current developments and future needs in standards for cementitious 

materials, Cem Concr Res 78 (2015), 165-177.  

[3]  Haynes, H., O'Neill, R. and Mehta, P. K., Concrete deterioration from physical attack by 

salts, Concr Int 18 (1996), 63-68.  

[4] Haynes, H., O'Neill, R., Neff, M. and Mehta, P. K., Salt weathering distress on concrete 

exposed to sodium sulfate environment, ACI Mat J 105 (2008), 35-43.  

[5]  Verbeck, G. J., Field and laboratory studies of the sulfate resistance of concrete, in 

Performance of Concrete. A symposium in Honor of Thorbergur Thorvaldson, ACI and 

National Research council of Canada, Reprinted as Portland Cement Association Bulletin 

RX227, (1968).  

[6]  CSA A23.1-14, Concrete materials and methods of concrete construction, Canadian 

Standards Association, Toronto, Ontario, Canada, (2014). 

[7]  ACI 318-14, Building Code Requirements for Structural Concrete and Commentary, 

American Concrete Institute, (2014). 

[8] 


 Stark, D., Performance of Concrete in Sulfate Environments, Portland Cement 

Association, Skokie, Illinois, USA, (2002). 

[9]  Stark, D., Durability of concrete in sulfate rich soils, Portland Cement Association, 

Skokie, Illinois, USA, (1989). 

[10] Irassar, E., Di Maio, A. and Batic, O., Sulfate attack on concrete with mineral 

admixtures, Cem Concr Res 26 (1996), 113-123.  




114

International RILEM Conference on Materials, Systems and Structures in Civil Engineering 

Conference segment on Service Life of Cement-Based Materials and Structures 

22-24 August 2016, Technical University of Denmark, Lyngby, Denmark 

 

[11] ASTM C452-15, Standard Test Method for Potential Expansion of Portland-Cement 



Mortars Exposed to Sulfate, American Society for Testing and Materials, USA, (2015). 

[12] ASTM C1012-15, Standard Test Method for Length Change of Hydraulic-Cement 

Mortars Exposed to a Sulfate Solution," American Society for Testing and Materials, 

USA, (2015). 

[13] Folliard, K. and Sandberg, P., Mechanisms of concrete deterioration by sodium sulfate 

crystallization, in Durability of Concrete, Proceedings Third CANMET - ACI 

International Conference, ACI SP145, Nice, France, (1994).  

[14] McMillan, F., Stanton, T., Tyler, I. and Hansen, W., Long-Time Study of Cement 

Performance in Concrete, Chapter 5, ACI Special Publication, published in cooperation 

with the Portland Cement Association, American Concrete Institute, (Reprinted as 

Portland Cement Association Research Department Bulletin 30, Portland Cement 

Association, Skokie, IL.), Farmington Hills, MI, (1949). 

[15] Haynes, H. and Bassuoni, M., Physical Salt Attack on Concrete, Concr Int. 33 (2011), 

38-42.  


[16] Bassuoni, M. and Nehdi, M., Durability of self-consolidating concrete to different 

exposure regimes of sodium sulfate attack" Mat and Struc 42 (2009), 1039-1057.  

[17] ASTM C215-08, Standard Test Method for Fundamental Transverse, Longitudinal, and 

Torsional Resonant Frequencies of Concrete Specimens, American Society for Testing 

and Materials, USA, (2008). 

[18] ASTM C597-09, Standard Test Method for Standard Test Method for Pulse Velocity 

Through Concrete, American Society for Testing and Materials, USA, (2009). 

[19] ASTM C666-15, Standard Test Method for Resistance of Concrete to Rapid Freezing 

and Thawing, American Society for Testing and Materials, USA, (2015). 

[20] Haynes, H., Sulfate Attack on Concrete: Laboratory vs. Field Experience, Concr Int 24 

(2002), 64-70.  

[21] Yoshida, N., Matsunami, Y., Nagayama, M. and Sakai, E., Salt weathering in residential 

concrete foundations exposed to sulfate-bearing ground, J of Adv Concr Technol 8 

(2010), 121-134.  

[22] Liu, Z., Deng, D. and De Schutter, G., Does concrete suffer sulfate salt weathering?, 

Constr and Build Mat 

66 (2014), 692-701.

 



Yüklə 8,6 Mb.

Dostları ilə paylaş:
1   ...   49   50   51   52   53   54   55   56   ...   175




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə