Proceedings of the International rilem conference Materials, Systems and Structures in Civil Engineering 2016



Yüklə 8,6 Mb.
Pdf görüntüsü
səhifə62/175
tarix19.07.2018
ölçüsü8,6 Mb.
#56746
1   ...   58   59   60   61   62   63   64   65   ...   175

133

International RILEM Conference on Materials, Systems and Structures in Civil Engineering 

Conference segment on Service Life of Cement-Based Materials and Structures 

22-24 August 2016, Technical University of Denmark, Lyngby, Denmark 

 

 

Figure 7: Compressive strength evolution due to creep loading  



 

4. Conclusion 

 

In this study, the numerical part was devoted to study the effect of micro cracks during creep 



loading type in compression. It is worth noting that the use of a mesoscopic mesh allows 

retrieving the nonlinearity with respect to loading level without having to introduce coupling 

between creep and damage. Indeed, although these mesoscopic simulations are based on 

simple assumptions as the form of aggregates (spherical), the absence of Internal Transition 

Zone (ITZ) and a 2D plane stress state, its value is noticeable at a loading level of 65%. 

 

In the second part, experimental tests were presented to highlight the effect of creep for 



different age of loading on the concrete strength. The results show that in function of the 

concrete maturity, the strength increases due to creep effect for one month age loading while 

slightly decreases for older concrete (3 months). It is obvious that damage model are not able 

to reproduce the strength increase even if hydration is taken into account (early age behaviour 

model are not able to reproduce the concrete properties evolution after one month) and that 

be more realistic. 

 

References 

 

[1]  Sellier, A. and Buffo-Lacarrière, L., (2009), "Vers une modélisation simple et unifiée du 



fluage propre, du retrait et du fluage en dessiccation du béton", Revue Européenne de 

Génie Civil, Vol. 13, No. 10, pp. 1161-1182. 

[2]  Benboudjema, F. and Torrenti, J.-M.  (2008), "Early-age behaviour of concrete nuclear 

containments", Nuclear Engineering and Design, Vol. 238, pp. 2495-2506. 




134

International RILEM Conference on Materials, Systems and Structures in Civil Engineering 

Conference segment on Service Life of Cement-Based Materials and Structures 

22-24 August 2016, Technical University of Denmark, Lyngby, Denmark 

 

[3] Bazant, Z.P. and Panula L., (78-79)“Practical Prediction of Time-Dependent 



Deformations of Concrete”, Materials and Structures, RILEM, Part (1)- Shrinkage and 

Part (2)-Basic Creep: Vol.11, No.65, Sep.-Oct. 1978, pp. 307-328; Part (3)-Drying Creep 

and Part (4)-Temperature Effect on Basic Creep: Vol. 11, No.66, 1978,  pp. 415-434; Part 

(5)-Temperature Effect on Drying Creep: Vol.12, No.69, 1979, pp. 169-182. 

[4]  Thai, M.-Q., Bary B. and He Q.-C., (2014), "A homogenization-enriched viscodamage 

model for cement-based material creep", Engineering Fracture Mechanics, Vol. 126 

(2014), pp.54-72. 

[5] Mazzotti C, Savoia M., (2003) "Nonlinear creep damage model for concrete under 

uniaxial compression". Journal of Engineering Mechanics, ,129(9), 1065–75.  

[6]  Saliba, J., Grondin F., Matallah M. and Loukili A., (2012), "Relevance of a mesoscopic 

modelling for the coupling between creep and damage in concrete", Mechanics of Time-

Dependent Materials, Vol. 16, No.4. 

[7]  Nguyen T., Lawrence C., La Borderie, C., Matallah, M. and Nahas, G. (2010), "A 

mesoscopic model for a better understanding of the transition from diffuse damage to 

localized damage", European Journal of Environment and Civil Engineering, Vol.14(6-

7), pp.751-776.  

[8]  Roll, F. (1964). "Long time creep-recovery of highly stressed concrete cylinders". ACI 

Special publication no. 9 - Symposium on creep of concrete, pp. 113–114.  

[9] Brooks, J. J. and Neville, A.M. "A comparison of creep, elasticity and strength of 

concrete in tension and in compression",   Magazine of Concrete Research, Vol. 29, No. 

100, 1977, pp. 131-141. 

[10] Briffaut, M., Benboudjema, F., Torrenti, J.-M.  and Nahas, G. (2011), "Numerical 

analysis of the thermal active restrained shrinkage ring test to study the early age 

behavior of massive concrete structures", Engineering Structures, vol. 33(4) pp.1390-140. 

[11] Mazars, J., (1984), "Application de la mécanique de l'endommagement au comportement 

non linéaire et à la rupture du béton de structure", PhD thesis ENSET, LMT, in French. 

[12] Fichant, S., La Borderie, C., and Pijaudier-Cabot, G. 1999. "Isotropic  and anisotropic 

descriptions of damage in concrete structures", Mechanics of Cohesive-Frictional 

Material, vol. 4 pp.339–359. 

[13] Hillerborg A., Modeer M. and Petersson P. E. (1976), "Analysis of crack formation and 

crack growth in concrete by means of fracture mechanics and finite elements", Cement 

and Concrete Research, vol. 6, p. 773-782. 

ion theory for concrete creep I. Formulation, 

Journal of Engineering Mechanics, vol. 115 (8), p. 1691-1703. 

 



135

International RILEM Conference on Materials, Systems and Structures in Civil Engineering 

Conference segment on Service Life of Cement-Based Materials and Structures 

22-24 August 2016, Technical University of Denmark, Lyngby, Denmark 

 

REMAINING SERVICE LIFE OF RAILWAY PRESTRESSED 

CONCRETE SLEEPERS 

 

Sakdirat Kaewunruen 



(1)

, Shintaro Minoura 

(2)

, Tsutomu Watanabe 

(2)

, and Alex M 

Remennikov 

(3)

 

 

(1) The University of Birmingham, Birmingham, UK 



(2) Railway Technical Research Institute, Tokyo, Japan 

(3) University of Wollongong, Wollongong, Australia 

 

 

 



 

Abstract 

Prestressed concrete sleepers (or railroad ties) are structural members that distribute the wheel 

loads from the rails to the track support system. Over a period of time, the concrete sleepers 

age and deteriorate in addition to fully experiencing various types of static and dynamic 

loading conditions, which are attributable to train operations. Recent studies have established 

two main limit states for the design consideration of concrete sleepers: ultimate limit states 

under extreme impact and fatigue limit states under repeated probabilistic impact loads (low 

and high cycles). It was noted that the prestress level has a significant role in maintaining the 

high endurance of the sleepers under low to moderate repeated impact loads. Based on 

extensive field investigations and experimental tests, this paper presents a variation of static 

and dynamic load condition of railway concrete sleepers in revenue services. It presents the 

limit states involving in testing and evaluating for the remaining service life of railway 

prestressed concrete sleepers. Experimental results are also highlighted to demonstrate the 

deterioration and toughness of the sleepers after services. 

 

 

1. Introduction 



 

Railway prestressed concrete sleepers have been utilised in railway industry for over 50 years. 

The railway sleepers (called ‘railroad ties’) are a main part of railway track structures. A 

major role is to distribute loads from the rail foot to the underlying ballast bed. Based on the 

current design approach, the design life span of the concrete sleepers is considered around 50 

years [1-3]. Figure 1 shows the typical ballasted railway tracks and their components. There 

are two main groups of track components: substructure and superstructure. The substructure 

includes subballast, subgrade, and ground formation, while the superstructure consists of rails

rail pads, fastening systems, railway sleepers (concrete or timber) and ballast (crushed 

aggregate). Railway track structures often experience the aggressive dynamic loading 

conditions due to wheel/rail interactions associated with the irregularities in either a wheel or 



Yüklə 8,6 Mb.

Dostları ilə paylaş:
1   ...   58   59   60   61   62   63   64   65   ...   175




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə